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The Oer03 model

The Oer03 model is introduced in Oerlemans (2003) – some details are briefly summarized here. The model is “highly param-10
eterized” and coupled to the surrounding climate by the altitude of the runoff line. Effectively the model consists of three steps:
1) describing the shape of the ice sheet, 2) analytically integrating the mass balance over the ice sheet and 3), numerically
integrating the resulting expression for dR/dt where R is the radius of the ice sheet; the volume V is then uniquely determined
from R.

Above the runoff line the accumulation is constant, below the balance gradient is constant; this is illustrated in Fig. (1) in the15
main article. The ice sheet is axially symmetric and rests on a sloping bed; furthermore ice is assumed to be a perfectly plastic
material (Oerlemans, 2003).

The parameters we use are shown in Table 1. We have kept most parameters fixed as compared to Oerlemans (2003) but
changed a total of 7 values to crudely approximate Greenland – note that we do not claim to be able to make accurate predictions
of the GrIS even with this parametrisation. The temperature T = 5.8◦C has been chosen so that no temperature anomaly (i.e.20
setting T = 0 in Eq. 2) gives a equilibrium volume of about 7m SLE, corresponding roughly to the GrIS (Church et al., 2013).

Steps 1 through 11 below describe the Oer03 model setting used – these steps describe calculations performed at every time
step that give an expression for

dR

dt
= f(T,R); (1)

dR/dt is then integrated using the Euler scheme with a time step of 1 year. We find that using a smaller time step size than this25
only produce negligible differences – see Figure 1 for an example. Since we describe an algorithm and not a derivation below,
we will use left arrows for assignment.

1. We couple the ice sheet to the ambient temperature by introducing the following relationship between temperature and
height of the equilibrium line (Oerlemans, 2008):

hEq← hE,0 + (T − T̄ ) · 1000/6.5. (2)30

As in the main article, Eq. 2 represents an increase of the equilibrium line altitude of approximately 154 m ◦C−1.

2. Equation 3 reflects that the accumulation rate will likely decrease for a large ice sheet (Eq. 20 in Oerlemans (2003)):

A←A0e−R/RC . (3)

3. Height of the runoff line (Eq. 15 in Oerlemans (2003)):

hR← hEq +A/β. (4)35
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4. Height of the bedrock where the ice sheet ends:

hE ← d0− sR. (5)

5. Location where the runoff line and the ice sheet surface meet (Eq. 17 in Oerlemans (2003)):

rR←R− (hR−hE)2/µ. (6)

6. Check if the ice sheet extends into the sea, i.e. if R> rc. If so, use Eq. (7) in Oerlemans (2003) to define the radial5
coordinate of the grounding line rgr:

– if R> rc:

rgr =R−h2E/µ. (7)

7. If the radial coordinate of the runoff line is larger than of the grounding line, set runoff coordinate to grounding coordi-
nate:10

– if rR > rgr:

rR← rgr. (8)

8. If the height of the runoff line is smaller than the height of ice sheet termination, set radial coordinate of the runoff line
to radius of the ice sheet:15

– if hR < hE

rR←R. (9)

9. If R< rc the ice sheet is continental. Equations 10 and 11 are included for numerical reasons.

– if R≤ rc
– if rR < 020

rR← 0 (10)

– if R< 1

R← 1 (11)

– Calculate total dV/dt=Btot:

Btot ← πAR2 (12)25

−πβ (hR−hE)
(
R2− r2R

)
(13)

+
4πβµ1/2

5
(R− rR)

5/2 (14)

−4πβµ1/2

3
R (R− rR)

3/2
. (15)

(16)

10. If R> rc the the ice sheet extends into the sea:30
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– if R> rc

Btot ← πAr2gr (17)

−πβ (hR−hE)
(
r2gr − r2R

)
(18)

+
4πβµ1/2

5

(
(R− rR)

5/2− (R− rgr)
5/2

)
(19)

−4πβµ1/2

3

(
R (R− rR)

3/2−R (R− rgr)
3/2

)
(20)5

−2πrgr

(
ρw
ρi

)
f (srgr − d0)

2
. (21)

Here the last term corresponds to Eq. 19 in Oerlemans (2003) and is related to the flux across the grounding line.

11. Relationship between dR
dt and Btot, corresponding to Eq. 13 in Oerlemans (2003):

– if R≤ rc

Q ← π

(
1 +

ρi
ρm− ρi

)(
4

3
µ1/2R3/2− sR2

)
, (22)10

dR

dt
←Btot/Q. (23)

– if R> rc

Q ← π

(
1 +

ρi
ρm− ρi

)(
4

3
µ1/2R3/2− sR2

)
(24)

−2
ρw

ρm− ρi
(
πsR2− d0R

)
, (25)

dR

dt
←Btot/Q. (26)15

Integrating steps 1-11 yield a time series of the ice sheet radius. To convert to volume we use the following relations (Eqs.
9, 11 and 12 in Oerlemans (2003)); the volume of the continental part of the ice sheet:

Vcont =
8πµ1/2

15
R5/2− 1

3
πsR3. (27)

In the case of the ice extending to the sea, the volume of the sea water replaced by ice:

Vsea = π

(
2

3
s
(
R3− r3c

)
− d0

(
R2− r2c

)
.

)
(28)20

Vsea is set to zero if the ice does not extend to the sea and thus R< rc. The total volume is given by:

Vtot = Vcont

(
1 +

ρi
ρm− ρi

)
− ρw
ρm− ρi

Vsea. (29)
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Name Unit Value Notes
A0 m ice yr−1 1.0 † Characteristic specific balance.
β m ice yr−1m−1 0.005 † Specific balance gradient.
c m1/2 2× 106 † Bed slope effect parameter.
CR m 5× 105 † e-folding radius for “desert effect” from large ice sheets; see Eq. 3
d0 m = hE,0

∗) Undisturbed bed height at center of ice sheet.
hEq m See Eq. 2 ∗) Height of equilibrium line.
hE,0 m 1545 ∗) Equilibrium line height at T = 0. Approximate 1990 - 2010 average (NOAA (2015), Fig 3.2a).
f yr−1 0.5 + Bulk flow parameter related to ice discharge.
µ0 m1/2 8 † Bed slope effect parameter.
µ= µ0 + cs2 Equation 4 in Oerlemans (2003)
ρi kg m−3 900 + Density of ice.
ρw kg m−3 1025 + Density of sea water.
ρm kg m−3 3500 + Density of bedrock.
rc m 8× 105 ∗) Continental radius. Approximate width of Greenland.
rgr m 8× 105 ∗) Initial value – dynamical value in the model.
s m/m d0/rc ≈ 0.002 ∗) Bed slope.
T̄ ◦C 5.8∗) Temperature offset.

Table 1. †: Suggested in Oerlemans (2003). +: suggested in private communication with Hans Oerlemans. ∗): chosen by the present authors.
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Time step size ∆t used for numerical integration

To determine an adequate time step size ∆t to use for numerically integrating Eq. 1, we first generate a time series of fluctu-
ating temperatures {Tt} as described by Eq. (8) in the main article. With {Tt} as input, and a similar initial condition as the
simulations shown in Fig. 2 in the article, Eq. 1 is numerically integrated for varying ∆t using the Euler scheme. ∆t is varied
in such a way that the temperature is the same for each whole year, regardless of the time step size. The results of varying ∆t5
from 0.01 year to 1 year are shown in Fig. 1. As the resulting graphs of the ice sheet volume V (t) practically coincide, we
consider a time step size of one year to be sufficient.

Figure 1. Varying the integration stepsize ∆t from 1 year to 0.01 years for a simulation with T = 0, such that the (random) fluctuating
temperature Tt is the same for each whole year. A visual inspection confirms qualitatively that the graphs for varying ∆t coincide and we do
not further analyze the consequences of varying ∆t.
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Observed fluctuations in Greenland temperature

Surface temperature anomalies were obtained from (KNMI). We use the “Twentieth Century Reanalysis V2c” from the years
1851 to 2011 in a box spanning 68◦N to 80◦N and 25◦W to 60◦W. The raw data consists of monthly means and are shown in
Figure 2 as the blue curve.
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Figure 2. Reanalysis data showing monthly mean surface temperature anomaly (blue curve) over the area 68◦N – 80◦N, 25◦W – 60◦W
covering a large part of Greenland. The red curve is the annual mean surface temperature anomaly; this has observed variance σT,obs = 1.55
◦C2.

We treat the temperature data as follows:5

1. We calculate the annual mean (the red curve in Figure 2),

2. To the annual means we fit an autoregressive model of order 1 or an AR(1)-model,

3. The parameters from this model are used to generate artificial temperature time series {Tt} that fluctuate in a way similar
to the observed temperatures over Greenland.
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An AR(1) model describing describing {Tt} has the form

Tt+1 = c+ aTt +σARWt. (30)

where (c,a,σAR) are parameters to be determined and Wt is white noise with unit variance and zero mean. The parameters
(a,σAR) are found using MATLAB’s estimate(). We find

(a,σ2
AR) = (0.67,0.85). (31)5
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Evaluating neglected terms in Eq. (6)

In the text between Eqs. (4) and (5) in the main article we argue that the terms 〈(Vt−V )2〉 and 〈(Tt−T )(Vt−V )〉 can be
neglected for the Oer03 model since they tend to zero when the ice sheet approaches equilibrium. This can be seen in Fig.
(3) where we evaluate these terms numerically for an ensemble of simulations with parameters identical to the simulations
shown in Fig. 2 (main article, left). To construct one of the time series in Fig. (3), we first integrate the Oer03 model using a5
temperature time series {Tt}with mean T , and then find the steady state mean volume V . Then, at each time step, the quantities
in Fig. (3) are calculated. In each case, it is clear that the mean quantities 〈(V (t)−V )2〉 and 〈(T (t)−T )(V (t)−V )〉 tend to
zero.

Figure 3. Evaluation of the terms dropped from Eq. 5 in the main article, for simulations with same parameters as in Fig. 2 (main article). It
is clear that 〈(Vt−V )2〉 and 〈(Tt−T )(Vt−V )〉 tend to zero.
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Analysis of Robinson et al. (2012)’s data

We aim to estimate the effect of fluctuating temperatures on the results obtained by Robinson et al. (2012). Our aim is to find
∆T and ∆SMB as shown in Fig. 3 (main article, right) by fitting polynomials f̃ij(T ) to the SMB as a function of warming
temperature T (Eq. (10), main article).

Methodology5

– In Robinson et al. (2012) the warming is ramped for the first 100 years, for numerical reasons. We wait until t= 200
years to extract SMB(T),

– Robinson et al. (2012) employ 9×11 values of two separate parameters deemed “equally likely” in their simulations, as
well as 11 values for the warming, totalling 1089 individual ice sheet simulations,

– For each of the 99 parameter combinations, we fit a 3rd degree polynomial to the SMB(T ), following Fettweis et al.10
(2013). We denote these fits f̃ij(T ),

– We proceed as outlined in Eqs. (11) and (12) (main article),

– Finally we calculate 95% credible intervals for ∆T and ∆SMB for each value of T . This is done by fitting a density
to the obtained ∆T and ∆SMB (using MATLAB’s ksdensity()) and calculating the interval containing 95% of the
observations.15

As stated in the conclusion in the main article, we must assume the ice sheet volume to be constant when calculating the
f̃ij’s since these functions represent Taylor expansions around a steady state (see Eqs. (3)-(6) in the main article). It is therefore
relevant to measure to what extent the ice sheet volume varies. To measure this, we calculate, for each parameter pair in the
simulations carried out by Robinson et al. (2012), the mean, maximum and minimum ice sheet volume for the range of 11
warming temperatures considered, denoted Vmean, Vmax and Vmin, respectively. We then calculate the quantity20

Vdiff, max =
Vmax−Vmin

Vmean
× 100% (32)

for each parameter pair, giving us a measure of the maximum difference in ice sheet volume between the simulations, compared
to the mean ice sheet volume, for that parameter pair. Histograms of Vdiff, max are shown in Fig. (4) for all the warmings
considered in Robinson et al. (2012), and in Fig. (5) for warmings up to 4◦C.

The variations in ice sheet volume shown in Fig. (4) are substantial, up to 9.5%. To draw our conclusion, however, we only25
need to consider warming temperatures up to 4%. As shown in Fig. (5), the variation in this case is less than 3%.
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Figure 4. Histogram of the maximum difference in volume for different temperature anomalies divided by the mean volume t= 200 years
in the data from Robinson et al. (2012), calculated for each parameter combination; in total there are 9× 11 combinations of two separate
parameters .
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Figure 5. Same as Figure 4 but for a maximum warming of 4◦C.
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Conversion from m3 and Gt ice to meters sea level equivalent (m SLE)

We take the the surface area of the world’s oceans Aocean to be 361,900,000 km2 (Eakins and Sharman, 2010), or 3.619×1014

m2 and, as in Table 1, the density of ice ρi to be 900 kg m−3, the density of sea water ρw to be 1025 kg m−3 and approximate
the density of freshwater ρf as 1000 kg m−3 so that 1 Gt ice is equivalent to 109 m3 freshwater.

To convert 1 m3 ice to meters sea level equivalent:5

1m3 ice = 1m3 ρi/ρw
Aocean

m SLE = 2.4262× 10−15 m SLE. (33)

To convert 1 Gt ice to sea level equivalent

109m3 freshwater = 109m3 ρf/ρw
Aocean

m SLE = 2.6958× 10−6m SLE. (34)
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