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Abstract. The Arctic sea ice extent throughout the melt sea-
son is closely associated with initial sea ice state in winter
and spring. Sea ice leads are important sites of energy fluxes
in the Arctic Ocean, which may play an important role in the
evolution of Arctic sea ice. In this study, we examine the po-
tential of sea ice leads as a predictor for summer Arctic sea
ice extent forecast using a recently developed daily sea ice
lead product retrieved from the Moderate-Resolution Imag-
ing Spectroradiometer (MODIS). Our results show that July
pan-Arctic sea ice extent can be predicted from the area of
sea ice leads integrated from midwinter to late spring, with
a prediction error of 0.28 million km2 that is smaller than
the standard deviation of the observed interannual variability.
However, the predictive skills for August and September pan-
Arctic sea ice extent are very low. When the area of sea ice
leads integrated in the Atlantic and central and west Siberian
sector of the Arctic is used, it has a significantly strong rela-
tionship (high predictability) with both July and August sea
ice extent in the Atlantic and central and west Siberian sec-
tor of the Arctic. Thus, the realistic representation of sea ice
leads (e.g., the areal coverage) in numerical prediction sys-
tems might improve the skill of forecast in the Arctic region.

1 Introduction

Sea ice is an important component of the climate system.
In the past few decades, Arctic sea ice has undergone dra-
matic change associated with changes in atmospheric and
oceanic processes (Comiso et al., 2008; Ding et al., 2017; Liu
et al., 2013; Parkinson and Comiso, 2013; Richter-Menge et
al., 2016; Stroeve et al., 2007, 2012). Satellite observation
shows a decreasing Arctic sea ice extent at an annual rate
of about 4.73 % per decade and a faster rate of 13.56 % per
decade in September for the period of 1979–2017, calculated
using the Arctic sea ice index obtained from the National
Snow and Ice Data Center (see Sect. 2 for details of data).
The decreasing Arctic sea ice not only affects the local envi-
ronment and community, i.e., brings opportunities and chal-
lenges to indigenous people (Forbes et al., 2016; Lamers et
al., 2016), but also has strong feedback on other components
of the climate system, i.e., increases the frequency of abnor-
mal weather and climate in the midlatitudes of the North-
ern Hemisphere and influences the thermohaline circulation
(Budikova, 2009; Levermann et al., 2007; Liu et al., 2012;
Vihma, 2014). Hence there is an increasing demand for Arc-
tic sea ice prediction at seasonal and longer timescales, es-
pecially during the melting season (Eicken, 2013; Stroeve et
al., 2014).

Many works have been done to improve seasonal fore-
cast skill of Arctic sea ice (Guemas et al., 2016; Stroeve
et al., 2014). Seasonal prediction of Arctic sea ice extent
has been produced with statistical methods; i.e., many use
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regression-type statistical models, trained from historical
data and then applied to forecast the near future. To date,
statistical models show comparable or slightly higher skill
than dynamic models in terms of the prediction of the total
Arctic sea ice extent (Blanchard-Wrigglesworth et al., 2015;
Stroeve et al., 2014). The evolution of Arctic sea ice ex-
tent during summer and fall is closely associated with ini-
tial sea ice conditions in winter and spring. The potential of
different sea ice parameters as predictors of Arctic sea ice
extent has been explored using empirical statistical models.
The results show that some parameters can significantly con-
tribute to the improvement in seasonal sea ice forecast skill
at different lead times (Holland and Stroeve, 2011; Lindsay
et al., 2008). For example, sea ice concentration and surface
temperature in spring are introduced into a multiple linear re-
gression model to forecast the minimum Arctic sea ice extent
(Drobot, 2007; Drobot et al., 2006). Some studies suggested
that accurate sea ice thickness can increase forecast skill 2
months ahead (Day et al., 2014; Dirkson et al., 2017). Re-
cently, the spring melt pond fraction has been employed to
improve the skill of forecasting September sea ice extent (Liu
et al., 2015; Schröder et al., 2014). An annual sea ice outlook
has solicited prediction of mean September Arctic sea ice
extent from the research community since 2008. The result
shows that the median sea ice predictions are off by a large
margin in 2009, 2012 (record low), 2013, 2014 and 2016
(second record low) (Hamilton and Stroeve, 2016; Stroeve
et al., 2014).

Sea ice leads develop as quasi-rectilinear cracks within the
ice pack due to sea ice dynamics and warm water upwelling
at particular locations. Leads can be kilometers to tens of
kilometers long and meters to kilometers wide, which are
more prevalent in areas of thin ice (i.e., the marginal ice zone)
than in the central Arctic ice pack (Wadhams et al., 1985).
Though leads only cover a small proportion of sea ice area,
they are important sites of energy fluxes that can cause a large
fluctuation of air temperature (Lüpkes et al., 2008). Leads are
responsible for about 50 % of a transfer of sensible heat from
the Arctic Ocean to the atmosphere during winter (Maykut,
1982). In situ measurements from the Arctic Ice Dynamics
Joint Experiment Sea Ice Lead Experiment in 1974 showed
that sensible heat and latent fluxes from leads can exceed 400
and 130 W m−2, respectively (Andreas et al., 1979). Sensi-
ble heat flux over sea ice leads depends strongly on leads’
width. Narrow leads are over 2 times more efficient in trans-
ferring heat than larger ones (Maykut, 1982). When consid-
ering the leads’ width influence in the assessment, heat flux
can be up to 55 % larger (Marcq and Weiss, 2012). In addi-
tional, the albedo of leads is about 0.07 under cloudy con-
ditions (Tschudi et al., 2002) in contrast to 0.6–0.9 of sea
ice or snow-covered ice (Perovich et al., 2002). As a result,
the leads absorb more shortwave radiation. Adversely, sea
ice leads that persist throughout the winter are often accom-
panied by low-level clouds downwind because of the release

of heat and moisture into the atmosphere, influencing the sur-
face energy budget.

While sea ice leads play an important role in the determi-
nation of the evolution of Arctic sea ice, their potential role
in Arctic sea ice prediction has not been examined. One rea-
son is a lack of observations of sea ice leads with sufficient
spatial and temporal coverage. This hampers our understand-
ing of the variability of sea ice leads in the Arctic Ocean,
and their relationship with Arctic sea ice cover (Ivanova et
al., 2016; Wernecke and Kaleschke, 2015). Another reason is
that sea ice leads constitute an unrepresented process in nu-
merical prediction systems and climate models due to their
highly nonlinear, small-scale and intermittent characteristics
(Spreen et al., 2017; Wang et al., 2016). As a result, poten-
tial effects of sea ice leads on Arctic sea ice prediction are
not well understood. Given that sea ice leads dominate the
atmosphere–sea ice–ocean interface in the aforementioned
manner, in this study, we use a recently developed sea ice
lead product retrieved from the Moderate-Resolution Imag-
ing Spectroradiometer (MODIS) thermal infrared data to ex-
amine the potential of sea ice leads as a predictor for summer
Arctic sea ice extent forecasts.

2 Data and methods

Compared to abundant research on characterizing variabil-
ity of Arctic sea ice concentrations (Cavalieri and Parkin-
son, 2012; Comiso et al., 2008), there are limited efforts fo-
cused on characterizing the variability of sea ice leads in the
Arctic Ocean. Some progress has been made on the detec-
tion of sea ice leads using remote sensing imagery. Lind-
say and Rothrock (1995) conducted a semi-automatic detec-
tion of sea ice leads, in which Advanced Very High Reso-
lution Radiometer (AVHRR) images are used to distinguish
the potential of open water/leads through spectral unmixing
analysis, and the uncertainty is mainly dependent on man-
ual cloud remove procedure. Miles and Barry (1998) manu-
ally mapped a 5-year sea ice leads climatology for the Arc-
tic Ocean using the Defense Meteorological Satellite Pro-
gram (DMSP) thermal and visible band imagery. Synthetic
Aperture Radar (SAR) or microwave imagery can be used
to obtain sea ice surface details with minimum cloud influ-
ence. Kwok (1998) used the RADARSAT Geophysical Pro-
cessor System (RGPS) to estimate the deformation of sea ice
and identify the linear kinematics features, i.e., sea ice leads.
Röhrs and Kaleschke (2012) presented an algorithm applied
to the passive microwave imagery from the Advanced Mi-
crowave Scanning Radiometer for EOS (AMSR-E) to detect
sea ice leads wider than 3 km. The RGPS and AMSR-E sea
ice lead products have been validated in the entire Arctic
Ocean and have the capability to show spatial variability of
sea ice leads (Bröhan and Kaleschke, 2014; Kwok and Cun-
ningham, 2002).
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Figure 1. (a) MODIS cloud fraction (%), (b) SAR backscatter coefficient image, and (c) MODIS sea ice leads in the highlighted area (the
northern Beaufort Sea) as shown by the box in (d) on 11 April 2015.

In a recent study, Willmes and Heinemann (2015a) pre-
sented a non-parameterized global threshold method, which
was validated and applied to derive sea ice leads maps from
surface temperature anomalies in the Arctic Ocean using the
MODIS ice surface temperature product. Daily sea ice lead
composites were created. The composite maps indicate the
presence of cloud artifacts in the leads’ identification that
arise from ambiguities in the MODIS cloud mask. To mit-
igate these artifacts, they implemented a fuzzy filter system
that employs spatial and temporal object characteristics to
distinguish between physical leads and artifacts. This ap-
proach advances the potential to retrieve daily leads maps
operationally from the MODIS infrared product.

In this study, the pan-Arctic sea ice leads data are obtained
from the Data Publisher for Earth & Environment Science
(PANGAEA), which is available for the months from Jan-
uary to April for the period 2003–2015 (Willmes and Heine-
mann, 2015b). The spatial resolution of the daily binary sea
ice lead map is about 1.5 km with the omission of 5 % that
can reflect sea ice lead variability except the Chukchi Sea
(Willmes and Heinemann, 2015a, c) because clear-sky day is
less than 15 % in the Chukchi Sea. Cloud contamination is
a major issue plaguing the retrieval of the pan-Arctic sea ice
leads from the MODIS infrared observation. Here we com-

pare the above MODIS sea ice leads data with the SAR im-
ages under cloudy conditions. Compared to MODIS that re-
ceives thermal emissions or reflected components, SAR al-
lows for penetration through most clouds and precipitation.
We calculate backscatter coefficients from the Sentinel-1A
Extra-Wide swath HH polarization images using the Sentinel
Application Platform and project them on the NSIDC polar-
stereographic grid with a spatial resolution of 100 m. Cloudy
conditions are determined using the MOD08 Level3 daily
cloud fraction product (Hubanks et al., 2018). For example,
Fig. 1 shows the MODIS cloud fraction, the SAR backscatter
coefficient image, and MODIS sea ice leads in the northern
Beaufort Sea on 11 April 2015. Compared to SAR images,
the MODIS sea ice lead data can capture the correct spa-
tial distribution of sea ice leads under cloudy conditions. The
consistence between the MODIS sea ice lead data and the
SAR image gives us more confidence in these data.

The Arctic sea ice extent is obtained from the National
Snow and Ice Data Center (NSIDC), which is derived from
the Nimbus-7 Scanning Multichannel Microwave Radiome-
ter, DMSP Special Sensor Microwave/Imager, and Special
Sensor Microwave Imager and Sounder sensors using the
NASA Team algorithm (Cavalieri et al., 1996).
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The daily total area of sea ice leads is computed from the
daily binary sea ice leads map, which is projected on the
NSIDC polar-stereographic grid with a spatial resolution of
25 km. During the projection, we calculate the number of
pixels with detected sea ice leads in a 25 km grid box. The
sea ice lead fraction is then defined as the ratio between the
number of pixels with detected sea ice leads and the total
number of pixels in the 25 km grid box. The total area of sea
ice leads is the sum of the product of the sea ice leads fraction
and the area of the grid box (625 km2). Here the daily total
area of sea ice leads is only calculated when the NSIDC sea
ice concentration in the grid box is larger than 15 % (com-
monly used as the threshold to define the sea ice edge).

3 Results

Figure 2 shows the evolution of the daily total area of sea
ice leads in the Arctic Ocean from 1 January to 30 April
averaged for the period of 2003–2015. Superimposed on
large year-to-year variation for each single day as shown
by the grey shading in Fig. 2, the climatology of the to-
tal sea ice lead area exhibits a gradually decrease from ∼
0.8 million km2 in early January to ∼ 0.5 million km2 in late
April. As shown in Fig. 3a, overall, there is no significant
trend in the total area of sea ice leads averaged for January–
April during 2003–2015, although it shows an increasing ten-
dency from 2003 to 2013. The year 2013 had the largest area
of sea ice leads (0.91 million km2) followed by the small-
est area in the year 2014 (0.45 million km2). We also cal-
culate the correlation coefficients between July, August and
September sea ice extent and the area of sea ice leads av-
eraged from January to April during 2003–2015, which are
−0.51, −0.30 and −0.23, respectively. It appears that July
sea ice extent is more closely related to the area of sea ice
leads than August and September. Figure 3b shows the spa-
tial distribution of the trend of the sea ice lead area in each in-
dividual 25 km grid box. The area of sea ice leads has exhib-
ited an increasing trend extending from the Greenland Sea,
through the northern Barents Sea, to the Laptev and Kara
seas, and a decreasing trend in the southern Barents Sea, be-
tween the eastern Siberian Sea and Chukchi Sea, and along
the coast of Alaska. In particular, the strong out-of-phase
trend between the northern and southern Barents Sea is per-
sistent for each individual month. However, most of these
trends are not significant at the 95 % confidence level, except
the southern Barents Sea.

To investigate the relationship between the area of sea ice
leads in the Arctic Ocean from late winter to mid-spring and
Arctic sea ice extent during the melting season, we calculate
the correlation between the time series of the sea ice lead area
averaged for January–April and sea ice extent in July, August
and September, respectively, during 2003–2015. It should be
noted that when examining correlation between two variables
with large trends, two variables might be linked statistically

Figure 2. Time series of the daily area of pan-Arctic sea ice leads
from 1 January to 30 April for the period of 2003–2015. The black
solid line is the averaged area during 2003–2015 and the grey shad-
ing denotes 1 standard deviation of interannual variability.

Figure 3. (a) Time series of the area of pan-Arctic sea ice leads
averaged from January to April for the period of 2003–2015 and
Arctic sea ice extent of July (blue), August (green) and Septem-
ber (red). (b) Spatial distribution of the trend of the sea ice leads
area (km2 year−1). The black cross denotes a statistically signifi-
cant trend (> 95 % confidence level).
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but be physically independent. Thus, we remove the trend for
all time series before calculating the correlation.

Following similar procedures in Liu et al. (2015), we inte-
grate the area of sea ice leads in the Arctic Ocean over time
and space to generate the sea ice lead time series. Specif-
ically, first, we integrate the average area of sea ice leads
occurring in each individual 25 km grid point varying from
1 to 2 January, to 3 January, and up through 30 April. Sec-
ond, we calculate the correlation coefficient between the de-
trended time series of the integrated area of sea ice leads at
each grid point and the de-trended time series of the total
sea ice extent in July, August and September, respectively.
As discussed earlier, in general, more sea ice leads during
late winter to mid-spring, even when they refreeze, tend to
contain thinner and weaker sea ice that is more susceptible
to atmospheric winds (i.e., storm) and air temperature (i.e.,
warm advection). This may result in less sea ice during the
melting season. Thus, more sea ice leads are expected to neg-
atively associate with subsequent sea ice extent, so we expect
negative correlations between sea ice leads and sea ice extent.

Figure 4 shows spatial correlation maps between the area
of sea ice leads integrated from 1 January to the day given
and the total Arctic sea ice extent in July, August and
September, respectively. For July sea ice extent (Fig. 4a–
d), some small clusters of significant negative correlations,
though scattered, are found in the Arctic Ocean north of
∼ 75◦ N as the area of sea ice leads is integrated for 1 month
from 1 to 30 January (black crosses in Fig. 4a). These small
clusters become relatively broader as the area of sea ice leads
is integrated to the end of February (60 days, Fig. 4b), cover-
ing a relatively larger percentage of the central Arctic Ocean
as well as much of the western Greenland Sea and northern
Barents and Kara seas. By the end of March, extending the
integration to 90 days, the area with significant correlations
is enlarged remarkably, especially in the Atlantic and central
and west Siberian sector of the Arctic (Fig. 4c). Extending
the integration to the end of April (120 days), the area with
significant correlations has minimal change (Fig. 4d) com-
pared to that of Fig. 4c. The spatial distribution of significant
correlations for August and September sea ice extent is sim-
ilar (Fig. 4e–l).A small cluster of significant negative corre-
lations is found in the western Laptev Sea as the area of sea
ice leads is integrated for 1 month (Fig. 4e and i). The clus-
ter becomes broader and extends northward into the central
Arctic Ocean after the 2-month integration (Fig. 4f and j).
Extending the integration time period beyond March yields
only small change in the area with significant negative corre-
lations (Fig. 4h and l).

Here we generate time series of the total area of sea ice
leads integrated from 1 to 2 January, to 3 January and up
to 30 April for the grid points with significant negative cor-
relation coefficients between sea ice leads integrated from
1 January to 30 April and July Arctic sea ice extent (grid
points with black crosses in Fig. 4d). We then calculate the
correlation between time series integrated to the day given

and time series of July Arctic sea ice extent. As shown in
Fig. 5 (blue line), the correlation between sea ice leads and
July sea ice extent is not statistically significant at the 99 %
confidence level (the horizontal black dot line in Fig. 5) as
the area of sea ice leads is integrated for 1 month. The first
significant correlation occurs when extending the integra-
tion time period to mid-February–late February (at day 49,
r =−0.67, > 99 % significance). After that, the magnitude
of the correlation gradually increases and the strongest re-
lationship is achieved as the integration extended to early
April (r =−0.73 at day 100). Extending the integration time
period beyond early April does not improve the correlation.
The evolution of the correlation coefficient between time se-
ries of sea ice leads and sea ice extent in August (green line
in Fig. 5) and September (red line in Fig. 5) is similar to that
of July sea ice extent, but the relationship is not statistically
significant at the 95 % confidence level; i.e., the largest cor-
relations are −0.41 and −0.30 in early April for August and
September, respectively.

Next, we study the potential of the area of sea ice leads
integrated from midwinter to early spring to be used as a pre-
dictor of July, August and September sea ice extent, respec-
tively. First, a linear regression model is used to calculate
the dependent variable (the de-trended Arctic sea ice extent,
ASIE) using the independent variable (the de-trended area of
sea ice leads integrated from 1 January to 30 April, SILA);
the linear regression is written as

ASIEmonth = A+B ·SILA+ e,

where A and B denote the intercept and the slope of the least
squares regression line and e is the residual or error.

Figure 6a shows the regressed July Arctic sea ice extent
anomalies. It appears that the observed interannual variabil-
ity of July ASIE anomalies can be reasonably reproduced by
the area of sea ice leads that is integrated from January to
April. The regression error (root mean square error, RMSE)
decreases gradually as the integration time period increases
(blue line in Fig. 6d). The smallest error (0.28 million km2)
occurs on 10 April, which is smaller than the standard devi-
ation of the observed July sea ice extent during 2003–2015
(0.54 million km2). Figure 6b and c show the regressed Au-
gust and September sea ice extent anomalies. The regressed
August sea ice extent anomalies are off by a large margin
for many years during 2003–2015 as compared to the ob-
servations. This is also true for the regressed September sea
ice extent anomalies. By the end of April, the error is 0.44
and 0.57 million km2 for August (green line in Fig. 6d), and
September (red line in Fig. 6d) respectively, which are com-
parable to the standard deviation of the observed ones (0.60
and 0.73 million km2 for August and September).

The above regression analysis is applied to all the data
during 2003–2015 to obtain the slope and intercept of the
linear regression model. Next, we conduct the prediction us-
ing the linear regression model. Specifically, only the data
from the first 6 years (2003–2008) are utilized to determine
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Figure 4. Spatial distribution of significant negative correlations between the area of sea ice leads integrated for 30 days (a, e, i), 60 days (b,
f, j), 90 days (c, g, k) and 120 days (d, h, l), and July (a–d), August (e–h) and September (i–l) sea ice extent, respectively. The areas with
correlation exceeding the 95 % confidence level are marked with black crosses and the color shading is the averaged area of sea ice leads for
the given period.
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Figure 5. Evolution of correlation coefficients between the total
area of sea ice leads integrated from 1 January to 30 April and the
total Arctic sea ice extent in July (blue line), August (green line)
and September (red line) during 2003–2015. The horizontal black
dot line is the 99 % confidence level.

the slope and intercept of the linear regression model, and
then Arctic sea ice extent anomalies during 2009–2015 are
predicted using the corresponding integrated area of sea ice
leads from January to April as inputs for the linear regression
model. For July sea ice extent prediction (Fig. 6e), the evo-
lution of the predicted ASIE anomalies is similar to the re-
sult of the aforementioned regression (the observed variabil-
ity of July ASIE anomalies during 2009–2015 is well cap-
tured). As shown in Fig. 6h (blue line), the prediction error
decreases gradually as the integration time period increases,
and the error reaches 0.28 million km2 by the end of April
which is smaller than the standard deviation of the observed
July sea ice extent anomalies. For August and September sea
ice extent prediction, the predicted sea ice extent anomalies
cannot capture the observed ASIE anomalies, and the error is
0.51 and 0.63 million km2 by the end of April for August and
September, respectively. We also utilize the data from all pre-
vious years to determine the slope and intercept of the linear
regression model, and then calculate the Arctic sea ice extent
anomalies during 2009-2015; i.e., the predicted July sea ice
extent anomalies in 2009 (2015) are based on the training us-
ing the data from 2003–2008 (2003–2014). The result of the
predicted July sea ice extent anomalies is very similar to that
using the data from the first 6 years (not shown).

Besides RMSE, the forecast skill (S) can be measured as
follows:

S = 1−
σf

σr
,

where σf is the RMSE of the prediction error and σr is the
RMSE of the observed July, August and September sea ice
extent anomalies (with trend), respectively (0.54, 0.60 and
0.73 million km2 during 2003–2015). S that is equal to 1
means a perfect prediction, equal to and less than 0 implies
no prediction skill. As shown in Fig. 6i, the prediction skill
gradually increases with lengthening integration period. For
July sea ice extent prediction, the predictive skill becomes

Figure 6. The total regressed Arctic sea ice extent anomalies (mil-
lion km2) in (a) July, (b) August and (c) September on the area of
sea ice leads integrated from 1 January to 30 April and (d) the evolu-
tion of their regression errors. The total predicted Arctic sea ice ex-
tent anomalies (million km2) in (e) July, (f) August and (g) Septem-
ber based on the area of sea ice leads integrated from 1 January to
30 April, (h) the evolution of their prediction errors and (i) their
forecast skills. The blue, green and red lines are July, August and
September, respectively.

the highest in late April (0.49). By contrast, there is no pre-
dictive skill for August and September sea ice extent. We also
repeat this analysis by using the data from all previous years
to determine the slope and intercept of the linear regression
model. The result of the prediction skill is similar to Fig. 6
(not shown).

In terms of the total Arctic sea ice extent, the integrated
area of sea ice leads has a strong impact on July sea ice ex-
tent, but minor impacts on August and September sea ice ex-
tent. As shown in Fig. 4d, h, and l, the areas with significant
negative correlations are mainly concentrated in the Atlantic
and central and west Siberian sector of the Arctic. Here the
Atlantic and central and west Siberian sector of the Arctic
is defined from 15◦W to 135◦ E (hereafter referred to as the
ATLCWS region). We further examine the potential of the
integrated area of sea ice leads in the ATLCWS region as a
predictor of July, August and September sea ice extent in the
ATLCWS region. We generate Figs. 7 and 8 following the
same procedures used to generate Figs. 5 and 6. For July sea

www.the-cryosphere.net/12/3747/2018/ The Cryosphere, 12, 3747–3757, 2018



3754 Y. Zhang et al.: Sea ice leads and seasonal sea ice prediction

Figure 7. Evolution of correlation coefficients between the ATL-
CWS region area of sea ice leads integrated from 1 January to
30 April and the ATLCWS region Arctic sea ice extent in July (blue
line), August (green line) and September (red line) during 2003–
2015. The horizontal black dot line is the 99 % confidence level.

ice extent in the ATLCWS region, the correlation increases as
the integration time period increases (blue line in Fig. 7). The
strongest relationship occurs at day 68 (r =−0.78, > 99 %
significance) and then tends to level off until the end of April.
For August sea ice extent (green line in Fig. 7), the evolution
of the correlation coefficient is similar to that of July sea ice
extent, and the correlation can reach −0.57 (> 95 % signif-
icance); it levels off until the end of April, which is much
higher than that of pan-Arctic sea ice extent (r =−0.41). For
September sea ice extent, though the relationship is better
than the pan-Arctic result, the correlation is not statistically
significant at the 95 % confidence level.

Following similar procedures in Fig. 6, we calculate the re-
gression and prediction analyses, except that the area of sea
ice leads in the ATLCWS region is integrated from 1 Jan-
uary to 30 April 30. The results show that the observed
interannual variability of July and August sea ice extent
anomalies in the ATLCWS region can be reasonably repro-
duced (Fig. 8a and b). The RMSE decreases gradually as
the integration time period increases (blue and green lines
in Fig. 8d). The smallest error occurs at day 68 for July
(0.15 million km2) and day 68 (0.13 million km2) for August,
which is smaller than the standard deviation of the observed
sea ice extent during 2003–2015 (0.33 million km2 for July
and 0.23 million km2 for August). The observed September
sea ice extent anomalies in the ATLCWS region cannot be
reproduced using the integrated sea ice leads in the same
region. In terms of the prediction, as shown in Fig. 8h, the
prediction error decreases gradually as the integration time
period increases, and the error is 0.14 million km2 for July
and 0.10 million km2 for August by the end of April. For
September sea ice extent prediction, the predicted sea ice ex-
tent anomalies cannot capture the observed anomalies.

Figure 8. The regressed ATLCWS region Arctic sea ice extent
anomalies (million km2) in (a) July, (b) August and (c) Septem-
ber on the ATLCWS region area of sea ice leads integrated from
1 January to 30 April and (d) the evolution of their regression er-
rors. The predicted ATLCWS region Arctic sea ice extent anomalies
(million km2) in (e) July, (f) August and (g) September based on the
ATLCWS region area of sea ice leads integrated from 1 January to
30 April, (h) the evolution of their prediction errors and (i) their
forecast skills. The blue, green and red lines are July, August and
September, respectively.

4 Conclusion

The Arctic sea ice extent through the melt season is known to
strongly depend on the state of sea ice in winter and spring.
In this study, we explore the potential of the integrated area
of sea ice leads in the Arctic Ocean as a predictor for Arctic
sea ice extent during the melt season. We find that the area
of pan-Arctic sea ice leads integrated from midwinter to late
spring has a significant impact on the evolution of the pan-
Arctic sea ice state midway through the melting season, with
the potential to improve the prediction of July pan-Arctic sea
ice extent. However, they cannot be used to improve predic-
tive skill for August and September pan-Arctic sea ice extent.
When the area of sea ice leads integrated in the Atlantic and
central and west Siberian sector of the Arctic is used, the re-
sult shows good predictive skills for both July and August
sea ice extent in the Atlantic and central and west Siberian
sector of the Arctic.
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Figure 9. (a) Spatial distribution of significant correlations between
the area of clouds (blue) and sea ice leads (orange) integrated from
1 January to 30 April with July sea ice extent. Grey hatching denotes
the overlapped significant correlations. (b) Evolution of correlation
coefficients between the total area of cloud integrated from 1 Jan-
uary to 30 April and the total Arctic sea ice extent in July (blue
line) during 2003–2015. The horizontal line is the 99 % (black dot)
confidence level.

To further ensure that the significant relationship between
the area of sea ice leads and July sea ice extent is related to
the area of sea ice leads actually present, rather than (1) cloud
cover and (2) open water/polynyas in the marginal ice zone
which can be wrongly classified as sea ice leads, first, we ex-
amine the relationship between the area of clouds in the Arc-
tic Ocean from late winter to mid-spring and Arctic sea ice
extent during the melting season. Following the same pro-
cedure applied to the calculation of sea ice leads as shown
above, the area of clouds is defined as the sum of the product
of the cloud fraction and the area of the grid box (625 km2)
using the MOD08 daily cloud fraction data projected on the
NSIDC polar-stereographic grid (25 km). We then calculate
correlation coefficients between the de-trended time series
of the integrated the area of (1) clouds and (2) open water
at each grid point and the de-trended time series of the to-
tal sea ice extent in July, respectively. Figure 9a shows sig-

Figure 10. (a) Spatial distribution of significant correlations be-
tween the area of open water (blue) and sea ice leads (orange) in-
tegrated from 1 January to 30 April with July sea ice extent. Grey
hatching denotes the overlapped significant correlations. (b) Evolu-
tion of correlation coefficients between the total area of open water
integrated from 1 January to 30 April and the total Arctic sea ice
extent in July (blue line) during 2003–2015. The horizontal line is
the 99 % (black dot) confidence level.

nificant correlations that exceed the 95 % confidence level
for clouds. It appears that the region with significant corre-
lations associated with the cloud area is very different from
that of sea ice leads, and the overlapped significant correla-
tions only occur in a small area as shown by grey hatching.
We further calculate the correlation between time series of
the area of clouds integrated to the day given and time se-
ries of July Arctic sea ice extent. Note that time series of the
area of clouds or area of open water is calculated over the
region where sea ice leads and extent have significant corre-
lations except the overlapped area (orange color in Fig. 9a).
As shown in Fig. 9b, there is no significant correlation be-
tween the cloud area and July sea ice extent throughout the
entire period. Second, the area of open water is defined as the
sum of the product of the open water fraction and the area of
the grid box (625 km2). We repeat the above analysis. Again,
only scattered areas have significant correlations associated
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with the open water area, and the overlapped significant cor-
relation only occurs in a small area (Fig. 10a). There is no
significant correlation between the open water area and July
sea ice extent (Fig. 10b). This suggests that the significant re-
lationship between the area of sea ice leads and July sea ice
extent is related to the area of actually present sea ice leads,
rather than cloud cover or marginal ice zone open water.

Despite the potential of sea ice leads in the prediction of
basin-wide and regional sea ice extent, sea ice leads consti-
tute a largely unrepresented process in numerical prediction
systems and climate models due to their highly nonlinear,
small-scale, and intermittent features. As a result, the po-
tential effects of sea ice leads on Arctic prediction are not
well understood. Given that sea ice leads strongly influence
the energy budget at the atmosphere–sea ice–ocean interface
and the statistical results from this study, it would stand to
reason that understanding the role of sea ice leads in Arctic
prediction can identify performance limitations of numerical
prediction systems and climate models and yield routes for
significant improvements.
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