

Supplement of

Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015

Emily A. Hill et al.

Correspondence to: Emily A. Hill (e.hill3@newcastle.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary Information

1. Data Sources

Supplementary Table 1: List of data sources used in this study. Data is split by usage and shown for each year, links for these data sources are provided in supplementary material.

Year	Data	Resolution	Source	
Front Position				
1948	AMS C501 Greenland Topographic Series	1:250,000	Polar Geospatial Centre	
196263	Corona Declassified Spy Satellite	-	USGS Earth Explorer	
1968/9	USAF Operational Navigation Charts	1:1,000,000	Perry-Castañeda Library, University of Texas	
1975–94	Landsat 1-5 MSS	30 m	USGS Earth Explorer	
1978	Aerial Photographs	2 m	Danish History Museum (Korsgaard et al., 2016)	
1986-87	SPOT-1 Satellite Imagery	10 m	European Space Agency	
1992–1999	ERS-1/2 SAR Imagery		European Space Agency	
2000–2012	Landsat 7 ETM-Panchromatic band (band 8)	15 m	USGS Earth Explorer	
			Rapid Ice Sheet Change Observatory	
2013-2015	Landsat 8-Panchromatic band (band 8)	15 m	USGS Earth Explorer	
Ice Velocity				
1991/92	ERS 1 winter velocity	500 m	Greenland Ice Sheet CCI project (Nagler et al.,	
			2016)	
1995/96	ERS 2 winter velocity	500 m	Greenland Ice Sheet CCI project (Nagler et al.,	
			2016)	
2000/01	MEaSUREs Greenland Annual Ice Velocity from		National Snow and Ice Data Center (Joughin et al.,	
2004/05-2009/10	InSAR (Version 2)	500 m	2015)	
2011–2013	MEaSUREs Greenland Ice Velocity: Selected		National Snow and Ice Data Center (Joughin et al.,	
	Glacier Site Velocity Maps from InSAR	100 m	2011)	
	(TerraSAR-X)			
2014–2016	Sentinel-1 SAR velocity	500 m	Greenland Ice Sheet CCI project (Nagler et al.,	
			2016)	
Surface Elevation Change				
1996-2011	ERS1, ERS2 and ENVISAT	5 km	Greenland Ice Sheet CCI project (Sørensen et al.,	
	5-yr means		2015)	
2011-2015	Cryosat 2 Surface Elevation Change v2	5.1	Greenland Ice Sheet CCI project	
	2-yr means	5 km		
Surface elevation, Ice thickness, bed topography				
Nominal date 2007	Ice surface elevation	150 m	National Snow and Ice Data Center	
(Data collected	Ice thickness		IceBridge Bed Machine	
between 1993–2014)	Bedrock elevation		(Morlighem et al., 2014)	
1978	Surface Digital Elevation Model	25 m	NOAA National Centers for Environmental	
			Information (Korsgaard et al., 2016)	
Climate-ocean data				
1948 - 2015	Air Temperature - DMI Automatic Weather	-	Danish Meteorological Institute (Vinther et al.,	
	Stations		2006)	
1979–2016	Sea Ice Concentrations from Nimbus-7 SMMR	25 km	National Snow and Ice Data Center	
			(Cavalieri et al., 1996)	

2. Bed topography error

5

Supplementary Figure 1: (a) categorised source data of bed topography from the BedMachine v3 for northern Greenland (b) bed elevation error (m) map from the BedMachine v3 dataset. Grey outlines show glacier surface drainage catchments, and black lines show glacier centreline profiles.

Supplementary Table 2: Mean elevation error for each glacier across either the grounded portion of the glacier centreline profile, or the seaward (bathymetry) section of the glacier centreline profile.

Glacier	Mean grounded bed topography error (m)	Mean bathymetry error (m)
Harald Moltke Bræ	40.94	252.64
Heilprin	53.62	75.30
Tracy	86.54	184.60
Humboldt	31.36	188.82
Petermann	25.14	111.86
Steensby	44.84	194.99
Ryder	33.88	196.03
Ostenfeld	70.82	283.94
Harder	78.93	143.33
Brikkerne	146.45	236.65
Marie Sophie	87.14	85.82
Academy	46.48	181.31
Hagen Bræ	63.24	245.75
Nioghalvfjerdsfjorden	42.94	15.57
Zachariae Isstrøm	52.59	17.47
Kofoed-Hansen Bræ	215.93	104.88
Storstrømmen	116.07	117.54
L. Bistrup Bræ	112.36	169.52

3. Bed slope direction

Supplementary Figure 2: Bed topography profiles for each of 18 study outlet glaciers in northern Greenland. Bed topography was sampled along glacier centreline profiles and subsampled from the grounding line to 20 km inland to determine the local bed slope direction inland of the grounding line. Each profile was fit with a linear regression model (red). The direction of the linear fit was used to determine if the bed slope was seaward or landward sloping.

5