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Figure S1: Numerical scheme to determine vm. Each column (1-3) shows the temperature field (row
a), temperature at the bed (row b) and net heat flux k(∂T/∂z|+ − ∂T/∂z|−) into the bed (row c).
Note that k(∂T/∂z|+− ∂T/∂z|−) = −τc

√
u2 + v2 for y < 0. Temperature contours are plotted in 5oC

intervals, with T = 0oC marked with a bold red line. Column 1 shows results for vm = 0.70 m/year
and an apparently singular heat flux at the origin in panel c1. Column 2 shows results for vm = 0.63
m/year with constraint (17a)1 violated in panel b2. Column 3 shows results for vm = 0.65 m/year,
satisfying both constraints. Note that the results in rows b and c are plotted for a narrow range of y
around the origin. The region in which the inequality constraints are violated can be quite small even
for substantially incorrect values of vm. This underlines the need for a high grid resolution around the
origin in our computations. Calculations were done with hs = 800 m, qr = 104 m year−1, Ts = −20cC,
A = 10−16, qgeo = 50 mW m−2, τs = 200 kPa, and τc = 5τs = 1000 kPa.

S1 Numerical scheme to determine the migration velocity1

To illustrate how the migration rate is calculated, we show in figure S1 solutions to the heat flow2

problem without the inequality constraints (17a)–(17b) imposed. Figure S1 deliberately focuses on3

flow with subtemperate slip; for the case of a no-slip-to-free-slip transition, see figure 4.3 of Haseloff4

(2015) and figures 2 and 5 of Schoof (2012).5

For ease of interpretation, we assume here (and in all other plots of the temperature field) that the6

melting point is at Tm = 0oC. The three columns in the figure correspond to different migration rates7

vm = ∂ym/∂t. For each migration rate, the first row of panels (a1–a3) shows the resulting temperature8

field in the ice, the second row (b1–b3) shows the temperature T (y, 0) at the bed, and the third (c1–c3)9

shows k(∂T/∂z|+ − ∂T/∂z|−). On the cold side of the bed (y < 0), this equals −τc
√
u2 + v2. On the10

warm side of the bed, we require k(∂T/∂z|+ − ∂T/∂z|−) to be finite.11

In column 1, we show a calculation in which vm is set to a value that is too large. This leads to12

a negative singular rate of melting for y > 0 (panel c1), or in other words, a singular rate of freezing.13

By contrast, the middle (column 2) shows a case where vm is too small. This results in temperatures14

exceeding the melting point in a small region on the supposedly frozen side of the transition (y < 0,15

see panel b2). In column 3, we show results with a value of vm for which the temperature is below the16

freezing point for y < 0 and the freezing rate remains non-singular close to the origin. As discussed17

in appendix A and in the next section S2, this is the best we can hope for if we allow for slip with a18
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finite amount of basal friction τc on the cold side of the transition: it is then not possible to suppress19

freezing completely.20

In the present case, we cannot prove mathematically that there is a single migration rate for21

which neither inequality constraint in (17a)–(17b) is violated. Such a proof was however possible in22

the simpler version of our model in Schoof (2012), and computationally we find a unique vm within23

bounds that are controlled by grid resolution. In practice, we determine the migration speed vm24

iteratively using an adapted bisection method. The upper limit of the search interval is a migration25

velocity that is too large and therefore leads to a singular freezing rate on the ice stream side for26

y > 0 which violates (17b)2 (as in column 1 of figure S1). The lower limit of the search interval has27

temperatures at or above the melting point for y < 0, violating (17a)1 (as in column 2 of figure S1).28

As with a standard bisection method, we halve the search interval at every iteration. We determine in29

which interval to continue the search based on which inequality constraint is violated at the midpoint:30

if (17a)1 is violated we continue in the upper half, otherwise in the lower half (see also Haseloff et al.,31

2015).32

S2 Velocity, shear heating and temperature close to the cold-temperate33

transition34

Here we extend the analysis of shear heating and temperature fields in appendix A of Schoof (2012)35

to the case of a transition from slip at a fixed basal yield stress τc to free stress. Our purpose is to36

demonstrate mathematically that the temperature field near the origin (assumed to be the location at37

which the cold-temperate transition takes place) allows only the three different cases described above:38

1) positive temperatures for y < 0, conflicting with the assumption that the bed there is subtemperate,39

and subtemperate sliding is taking place40

2) an infinite heat flux out of the bed, corresponding to an infinite rate of basal freezing on the warm41

side of the origin y > 042

3) as a limiting case, a finite rate of freezing on the warm side of the bed, equal to the dissipation43

rate on the subtemperate side of the bed44

The numerical scheme in the previous section S1 is built on the assumption that the limiting case 345

is the only physically acceptable one.46

For simplicity, we restrict ourselves to the case of constant ice viscosity η, and consider only flow47

parallel to the margin, assuming that the velocity component in the direction is much larger than the48

transverse velocity and therefore dominates the shear heating rate. We can treat the velocity as being49

the sum of a constant sliding velocity ūb at the transition from frictional to free slip, and a correction50

ũ(y, z). The latter then satisfies the Stokes flow problem51

η∇2ũ = 0

for z > 0, where ∇ is the gradient operator in the transverse y–z-plane, with boundary conditions52

η
∂ũ

∂z
=

{
τc at z = 0, y < 0
0 at z = 0, y > 0.

A general solution can be derived using complex variables, letting ζ = y + iz, and using the differen-53

tiation rules (England, 1971)54

∂

∂y
=

∂

∂ζ
+

∂

∂ζ

∂

∂z
= i

(
∂

∂ζ
− ∂

∂ζ

)
. (S1)

Since ũ satisfies Laplace’s equation, it is the real part of a holomorphic function φ(ζ), ũ(y, z) =55

Re(φ(ζ)), and we have ∂ũ/∂y + i∂ũ/∂z = φ′(ζ) (England, 1971). Continuing φ′ analytically to the56

lower half-plane =(ζ) < 0 by defining φ′(ζ) = φ′(ζ) (note that φ′ has no physical meaning in the lower57
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half-plane), we find that the extended function φ′ is analytic in the ζ-plane cut along the negative58

half of the real axis, where it satisfies i(φ′+(y) − φ′−(y)) = 2τc. The superscripts + and − indicate59

limits taken from above and below, respectively. Hence an integrable solution takes the general form60

(Muskhelishvili, 1992)61

φ′(ζ) = − τc
πη

log(ζ) +

∞∑
n=0

cnζ
n,

where log is the usual branch of the natural logarithm with a branch cut on the negative real axis, and62

the cn must be real to ensure the requisite symmetry of φ′. The corresponding velocity field expressed63

in polar coordinates, with y = r cos(ϑ) and z = r sin(ϑ), is64

ũ =
τc
πη
{rϑ sin(ϑ)− r[log(r)− 1] cos(ϑ)}+

n∑
n=0

cn
n+ 1

rn+1 cos[(n+ 1)ϑ].

Next, we consider the heat transport problem. At short enough length scales, several simplifications65

can be made. To an error of O(Per), advection can be omitted, and the strain heating rate η|∇ũ|2 can66

be approximated by retaining only the first two terms in the solution for φ′ ∼ −τc/(πη) log(ζ) + c0. In67

computing frictional dissipation due to sliding at the bed, we can also approximate the sliding velocity68

by ūb to an error of O(r log(r)). Hence, to an error of that magnitude,69

−k∇2T =

{
τ2c
π2η

[
log(r/r0)2 + ϑ2

]
for z > 0,

0 for z < 0,
(S2)

with the boundary conditions70

T (y, 0) =0 for z = 0, y > 0, (S3)

−k
[
∂T

∂z

]+

−
=τcūb for z = 0, y < 0, (S4)

[T (y, 0)]+− =0 for z = 0, y < 0 (S5)

where log(r0) = c0πη/τc. Importantly, the heat production rate for the no-slip to free-slip transition71

in Schoof (2012) behaves as 1/r, whereas it has only a logarithmic singularity in r here.72

Using (S1), we can express Poisson’s equation (S2) in terms of ζ as73

−4k
∂2T

∂ζ∂ζ
=

{
τ2c
π2η

log(ζ/r0) log(ζ/r0) for =(ζ) > 0

0 for =(ζ) < 0.
(S6)

We can write the solution in the form74

T =− τ2
c

8π2kη

{
2 [ζ log(ζ/r0)− ζ]

[
ζ log(ζ/r0)− ζ

]
− [ζ log(ζ/r0)− ζ]2 −

[
ζ log(ζ/r0)− ζ

]2
+ 2iπ

[
ζ2 log(ζ/r0)− ζ2

log(ζ/r0) + ζ
2 − ζ2

]
+ iπ

(
ζ2 − ζ2

)}
+ i

τcūb
2k

(
ζ − ζ

)
+ ϕ(ζ) + ϕ(ζ) for =(ζ) > 0

T =ϕ(ζ) + ϕ(ζ) for =(ζ) < 0

where ϕ is an analytic function in the lower and upper half planes, its form to be determined by75

the boundary conditions at the bed, where =(ζ) = 0. Along the negative half of the real axis, the76

boundary conditions (S4) and (S5) written in complex variable form using (S1) together ensure that77

ϕ′ and therefore ϕ are continuous across that boundary and hence analytic on the ζ-plane cut along78

the positive real axis. On that branch cut, ϕ+(y) + ϕ+(y) = ϕ−(y) + ϕ−(y) = 0. Splitting ϕ into a79

symmetric and antisymmetric part as Ω(ζ) = [ϕ(ζ) + ϕ(ζ)]/2 and Ψ(ζ) = [ϕ(ζ) − ϕ(ζ)]/2, it is then80

3



straightforward to show that Ψ is analytic in the entire ζ plane, while Ω satisfies the homogeneous81

Hilbert problem82

Ω+(y) + Ω−(y) = 0

on the positive half of the real axis. Requiring an integrable heat flux ϕ′, we have a general solution83

ϕ(ζ) = Ω(ζ) + Ψ(ζ) = −ζ1/2
∞∑
n=0

ian
2
ζn −

∞∑
n=0

ibn
2
ζn

where ζ1/2 has a branch cut on the positive half of the real axis, the limit taken from above being the84

usual positive square root
√
y, and the an and bn are purely real to satisfy the symmetries of Ω and85

Ψ.86

To an error of O(r5/2), we therefore obtain a temperature field close to the origin of the form87

T (r, ϑ) =
τ2
c

4π2kη
r2

{[(
log

(
r

r0

)
− 1

)2

+ ϑ2

]
− cos(2ϑ)

[(
log

(
r

r0

)
− 1

)2

− ϑ2

]

+ 2(ϑ− π) sin(2ϑ)

(
log

(
r

r0

)
− 1

)
− π sin(2ϑ)− 2πϑ cos(2ϑ)

}
− τcūb

k
r sin(ϑ)

+ a0r
1/2 sin

(
ϑ

2

)
+ a1r

3/2 sin

(
3ϑ

2

)
+ b1r sin(ϑ) + b2r

2 sin(2ϑ)

for 0 < ϑ < π, and88

T (r, ϑ) = a0r
1/2 sin

(
ϑ

2

)
+ a1r

3/2 sin

(
3ϑ

2

)
+ b1r sin(ϑ) + b2r

2 sin(2ϑ)

for π < ϑ < 2π. The response to englacial shear heating is represented by the term in curly brackets,89

which behaves as O(r2 log(r)2). The temperature is therefore dominated by the terms in the solution90

to the problem without englacial heating, of the form91

T ∼ a0r
1/2 sin (ϑ/2) + a1r

3/2 sin (3ϑ/2) + b1r sin(ϑ) + b2r
2 sin(2ϑ)−

{ τcūb
k r sin(ϑ) for 0 < ϑ < π

0 otherwise.

As in Schoof (2012), it is easy to see that we require a0 ≤ 0 to ensure temperatures do not go above92

freezing at the bed on the cold side of the transition point (that is, on ϑ = π, where the leading order93

form of T is then T ∼ a0r
1/2). A consequence of this is that, with a0 6= 0, we obtain a singular heat94

flux −kr−1∂T/∂ϑ|ϑ=0
ϑ=2π = ka0r

−1/2 out of the bed on the warm side.95

If we assume that a singular heat flux out of the bed is not viable as it leads to freezing of the96

bed on the warm side of the transition, contradicting the assumption that the ice stream is widening,97

then we must have a0 = 0. The temperature field near the origin is then linear at leading order, and98

can be written as T ∼ b1z for z < 0, T ∼ [b1 − τcūb/k]z for z > 0, with the horizontal temperature99

gradient only appearing at the next (higher) order.100

There are two important conclusions that can be drawn from this. The first is that the net heat101

flux out of the bed is102

−1

r

∂T

∂ϑ

∣∣∣∣0
2π

= −1

r

∂T

∂ϑ

∣∣∣∣π−
π+

= τcū

on both, the cold and the warm sides of the transition: it is impossible for the temperature gradient103

to change discontinuously from the left to the right of the transition point. The fact that the frictional104

heat τcūb generated to the left of the transition must be removed from the bed means that heat is105

removed at the same rate from the right, where presumably it must be supplied in the form of latent106

heat transported by drainage of meltwater along the bed. The second observation is that it is no107

longer necessary to have a region of temperate ice form near the transition point: if the temperature108

below the bed is above the melting point, we expect b1 < 0 and hence ∂T/∂z < 0 everywhere above109

the bed, corresponding to temperatures below the melting point in the ice.110
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Figure S2: Comparison of numerical velocity solutions with asymptotic solutions from Rice (1967)
and the solutions of the boundary value problem (S19)–(S21) for ϑ = π/8. Panel a shows solutions
of the downstream velocity U , panel b shows solutions of the across-stream velocity V and panel c
shows solutions of the vertical velocity W . n = 3 in all three cases.

S3 The velocity field close to the transition from no slip to free slip111

In section 4.3 we analyze the behavior of the temperature field close to the transition from no slip112

to free slip. To do so, we need to know the behavior of the velocities close to the origin, which we113

consider here. Near the origin of our geometry, i.e. for R = (Y 2 + Z2)1/2 → 0 and for ε � 1, the114

equation for the down-stream velocity (22) with boundary conditions (29)–(30a) is identical to the115

model for a crack-tip considered in Rice (1967, 1968). He shows that in polar coordinates, the velocity116

solution close to the transition from free slip to no slip is of the form117

U ∼ CuR
1

n+1

√
2n

n+ 1
A

2
n+1

ϑ + cosϑA
1−n
1+n

ϑ for R→ 0, (S7)

where R =
√
Y 2 + Z2, cosϑ = Y/R, Cu a constant that depends on the far field conditions, and118

Aϑ =
n2 − 1

4n
cosϑ+

√(
n2 − 1

4n

)2

cos2 ϑ+
(n+ 1)2

4n
. (S8)

Figures S2a and S3a confirm that our numerical solution reproduces this behavior as R → 0. From119

(S7) the asymptotic behavior of the heat production rate (32) is120

A ∼
(
Cu
2

)1+1/n

R−1A−1
ϑ . (S9)

The important feature of this result is that the heat production is singular, behaving as R−1 near the121

transition point. This is not a surprise: a similar behavior for n = 1 appears in Schoof (2004, 2012)122

and for n = 3 in Suckale et al. (2014). For the frequently used special cases of n = 1 and n = 3, A123

can alternatively be written as124

A ∼ CaR−1 ×

{
const. for n = 1,(√

3 + cos2 ϑ+ cosϑ
)−1

for n = 3.
(S10)

The local behavior of the across-stream velocities (V,W ) is more difficult to determine. For a125

constant viscosity (n = 1), Barcilon and MacAyeal (1993) show that126

V ∼ CvR1/2

(
2 cos

ϑ

2
+ sinϑ sin

ϑ

2

)
, W ∼ −CwR1/2 sin

ϑ

2
cos2 ϑ

2
. (S11)

For n 6= 1, the problem of finding the local behavior of V and W is complicated by the fact that the127

viscosity is determined by |∇U |, where the local behavior of U is given by (S7). To find a generalization128
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Figure S3: Comparison of numerical velocity solutions with asymptotic solutions from Rice (1967)
and the solutions of the boundary value problem (S19)–(S21) for R = 0.01. Panel a shows scaled
solutions of the downstream velocity U , panel b shows scaled solutions of the across-stream velocity
V and panel c shows solutions of the vertical velocity W . n = 3 in all three cases.

of (S11) for n 6= 1, we rewrite (23) in polar coordinates (R,ϑ):129

−∂P
∂R

+
1

R

∂

∂R
(RΣRR) +

1

R

∂ΣϑR

∂ϑ
− Σϑϑ

R
= 0, (S12a)

− 1

R

∂P

∂ϑ
+

1

R2

∂

∂R

(
R2ΣϑR

)
+

1

R

∂Σϑϑ

∂ϑ
= 0, (S12b)

1

R

∂

∂R
(RVR) +

1

R

∂Vϑ
∂ϑ

= 0. (S12c)

Here VR and Vϑ are the radial and angular velocity components, respectively, i.e., V = VReR + Vϑeϑ.
The constitutive relations for the stresses Σ in polar coordinates are:

ΣRR = µ
∂VR
∂R

, Σϑϑ = µ
1

R

(
∂Vϑ
∂ϑ

+ VR

)
, ΣϑR =

1

2
µ

(
1

R

∂VR
∂ϑ

+
∂vϑ
∂R
− vϑ
R

)
. (S13)

The boundary conditions (29) and (30a) at the base become130

Vϑ = µ
1

R

∂VR
∂ϑ

= 0 for ϑ = 0, Vϑ = VR = 0 for ϑ = π. (S14)

The downstream velocity U , given by (S7)–(S8) determines the viscosity µ through131

µ ∼ R
1−n
1+nN with N(ϑ) = [Aϑ(ϑ)]

n−1
n+1 . (S15)

We put µ = R
1−n
1+nN and make the ansatz (VR, Vϑ) = Rβ(V̄R(ϑ), V̄ϑ(ϑ)) and P = Rβ−2/(n+1)Pϑ(ϑ),132

which gives in (S12c)133

V̄R +
1

β + 1
V̄ ′ϑ = 0. (S16)

Here a prime denotes an ordinary derivative with respect to ϑ, so V̄ ′ϑ = dV̄ϑ/ dϑ. Equations (S12a)–134

(S12b) become135

−a0Pϑ − a1NV̄
′
ϑ +

(
a2NV̄ϑ − a3NV̄

′′
ϑ

)′
= 0, (S17a)

−P ′ϑ + b1NV̄ϑ − b2NV̄ ′′ϑ + b3
(
N ′V̄ ′ϑ +NV̄ ′′ϑ

)
= 0, (S17b)

where136

a0 =

[
β − 2

n+ 1

]
, a1 =

β

β + 1

[
β +

2n

n+ 1

]
, a2 =

(β − 1)

2
, a3 =

1

2

1

β + 1
,

b1 =
1

2

(
β +

2n

n+ 1

)
(β − 1), b2 =

1

2

(
β +

2n

n+ 1

)
1

β + 1
, b3 =

β

β + 1
.

137
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Elimination of the pressure in (S17a) by use of (S17b) leads to a fourth order homogeneous differ-138

ential equation for V̄ϑ with non-constant coefficients139

0 =

(
b1 + c5

N ′′

N

)
V̄ϑ +

(
c4
N ′

N
− c2

)
V ′ϑ +

(
c3 −

N ′′

N

)
V̄ ′′ϑ − 2

N ′

N
V̄ ′′′ϑ − V̄

′′′′
ϑ (S19)

where140

c1 =
a0

a3
b1, c2 =

a1

a3
, c3 =

a0

a3
(b2 − b3) +

a2

a3
, c4 =

[
2
a2

a3
− a1

a3
− a0

a3
b3

]
, c5 =

a2

a3
, (S20)

and N is given by equation (S15). The boundary conditions (S14) are likewise homogeneous,141

V̄ϑ = V̄ ′′ϑ = 0 for ϑ = 0, V̄ϑ = V̄ ′ϑ = 0 for ϑ = π, (S21)

and we have a generalized eigenvalue problem in which the eigenvalue β is somewhat unconventionally142

hidden in the coefficients (S20). We solve this problem using a shooting method, which gives β =143

0.271... as the lowest positive eigenvalue for n = 3. Once again we find that our numerical solutions144

reproduce this behavior, see figure S2b-c. Note that β is greater than 1/(1 + n), so that the viscosity145

is indeed dominated by gradients of the downstream velocity U . The shooting method also gives us146

Vϑ, from which VR can be calculated through equation (S16). The velocity components (V,W ) in147

Cartesian coordinates can be calculated from (V̄R, V̄ϑ) through148

V = Rβ(V̄R cosϑ− V̄ϑ sinϑ), W = Rβ(V̄R sinϑ+ V̄ϑ cosϑ). (S22)

The angular dependence of U , V and W is shown in figure S3.149

Note that the local solution we have derived here stems from a problem (equations (22)–(30b) of150

the main text) that contains no free parameters when — as we have assumed here — τ is infinite. As151

a result, we are guaranteed that Ca, Cu, V̄R and V̄ϑ are also parameter-free, as is implied in the main152

text.153

S4 The outer temperature problem for strong heat production154

In the main text, the velocity field derived in section S3 above is used to construct a local advection-155

diffusion problem for heat transport near the cold-temperate (and no-slip-to-slip) transition. That156

local model, equations (40) of the main text, is mathematically a boundary layer. It only depends on157

Λ and Ṽm as parameters, suggesting that Ṽm = f̃(Λ), if the far-field conditions on the boundary layer158

only depend on Λ, too. These boundary conditions mathematically come out of asymptotic matching159

with an ‘outer’ problem that describes heat transport at a larger scale (Holmes, 2013). Here we verify160

that matching leads to far-field conditions that only depend on Λ as required.161

The outer problem to the conductive boundary layer itself describes heat flow in a slender region162

along the bed. To identify leading order terms in this outer problem (confusingly, itself a boundary163

layer to the advection-dominated heat transport across the bulk of the ice thickness), we first need164

to understand the transverse velocity field near the bed. V = 0 implies that ∂V/∂Y = 0 at the165

bed, so ∂W/∂Z = 0 by mass conservation. By Taylor expansion, we obtain V ∼ Z, W ∼ Z2.166

Near-bed advection in the outer problem is captured by considering a thin region of vertical extent167

ZPe = Pe−β/(1+β) � 1 relative to ice thickness, labeled the ‘advective boundary layer’ in figure 5.168

Within this region, we rescale Z = ZPeẐ, V = ZPeV̂ , W = Z2
PeŴ , A = Â, Θ = Θ̂.169

Note that the vertical coordinate in the advective region is related to the vertical coordinate in170

the conductive boundary layer through Z̃ = Λ−1Pe(1−β)/(1+β)Ẑ. For β < 1, Ẑ = O(1) implies that171

Z̃ � 1. For n = 1, the exponent β equals 1/2, and for n = 3 we have β ≈ 0.27 (see supplementary172

section S3). Therefore the near-bed advective layer is a viable outer region to the conductive boundary173

layer because the advective layer has a much larger vertical and horizontal extent than the conductive174

boundary layer.175
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For n = 3 (or generally for n > 1 and β < 1/2), the outer problem is,176

Ṽm
∂Θ̂

∂Y
+ Λ

(
V̂
∂Θ̂

∂Y
+ Ŵ

∂Θ̂

∂Ẑ

)
= a for 0 < Ẑ, (S23a)

Ṽm
∂Θ̂

∂Y
= 0 for Ẑ < 0, (S23b)

to an error of O(Pe(2β−1)/(1+β)). As required, (S23a)–(S23b) only depend on Ṽm and Λ. As we are177

considering an outer problem that describes a slender region near the bed, our choice of reduced178

temperature Θ means that the relevant boundary condition is Θ̂(Ẑ = 0) → 0 as Y → −∞, equation179

(34c), which equally does not depend on any additional parameters.180

S5 Mechanical problem for a small slip region: τ ∼ α1/(n+1) � 1181

When we allow for subtemperate sliding, but at a large basal yield stress τ � 1, the velocity field will182

change only by a small amount: over most of the domain, basal shear stress will not attain the yield183

stress. The only location where that is not the case is close to the origin, where a hard transition from184

slip to no slip would lead to a stress singularity, exceeding any finite yield stress. In other words, the185

region of slip created by a large but finite τ is a mechanical boundary layer close to the origin, which186

remains small compared with the ice thickness. Outside that boundary layer, the velocity field will187

remain unchanged. In fact, at length scales that are intermediate between the boundary layer and the188

ice thickness scales, the local solution of supplementary section S4 will still apply, and provides the189

appropriate matching conditions on the mechanical boundary layer created by the small slip region.190

In this section, we construct a leading order model for that boundary layer. We focus on the case191

of τ ∼ α1/(n+1) � 1, in which the size of this mechanical boundary layer is the same as the size of192

the thermal boundary layer: this is the minimum size of the mechanical boundary layer at which we193

expect to start seeing an effect of subtemperate sliding on margin migration.194

We rescale the mechanical field equations using (Y, Z) = Rα(Ỹ , Z̃), A = Rα
−1Ã, U = R

1/(n+1)
α Ũ ,195

(V,W ) = Rα
β(Ṽ , W̃ ), and P = Rα

−1/(n+1)P̃ where Rα = α−1. The choice of exponent β ensures that196

the boundary layer solution can be matched with the outer problem at the ice thickness scale, whose197

behavior in the matching region (Holmes, 2013) is given by supplementary section S4 as discussed.198

This yields an equation for the velocity in the downstream direction of the same form as (22):199

∂

∂Ỹ

(
µ̃
∂Ũ

∂Ỹ

)
+

∂

∂Z̃

(
µ̃
∂Ũ

∂Z̃

)
= 0. (S24)

In the across-stream direction, we obtain from (23)200

∂

∂Ỹ

(
2µ̃
∂Ṽ

∂Ỹ

)
+

∂

∂Z̃

[
µ̃

(
∂Ṽ

∂Z̃
+
∂W̃

∂Ỹ

)]
− ∂P̃

∂Ỹ
= 0, (S25a)

∂

∂Ỹ

[
µ̃

(
∂Ṽ

∂Z̃
+
∂W̃

∂Ỹ

)]
+

∂

∂Z̃

(
2µ̃
∂W̃

∂Z̃

)
− ∂P̃

∂Z̃
= 0, (S25b)

∂Ṽ

∂Ỹ
+
∂W̃

∂Z̃
= 0. (S25c)

µ is the rescaled non-dimensional viscosity201

µ̃ =
1

21/n

∣∣∣∣∣∂Ũ∂Ỹ
∣∣∣∣∣
2

+

∣∣∣∣∣∂Ũ∂Z̃
∣∣∣∣∣
2
 1−n

2n

. (S26)

As before, we find for the vertical velocity component along the bed202

W̃ = 0 at Z̃ = 0. (S27)
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Similarly, the free slip boundary condition (29) on the temperate side remains unchanged203

µ̃
∂Ũ

∂Z̃
= µ̃

∂Ṽ

∂Z̃
= 0 at Z̃ = 0, Ỹ > 0. (S28)

On the frozen side of the bed, we have from (30b)204

either µ̃∂Ũ
∂Z̃

= α1/(n+1)τ Ũ

|Ũ |
, µ̃∂Ṽ

∂Z̃
= α1/(n+1)τ Ṽ

|Ũ |
, |Ũ | > 0, |Ṽ | > 0

or
∣∣∣µ̃∂Ũ

∂Z̃

∣∣∣ < α1/(n+1)τ,
∣∣∣µ̃∂Ṽ

∂Z̃

∣∣∣ < α1/(n+1)τ
∣∣∣ Ṽ
Ũ

∣∣∣ , |Ũ | = |Ṽ | = 0

 for Ỹ < 0, Z̃ = 0.

(S29)
Equations (S24)–(S29) only depend on α1/(n+1)τ = Γ−(n+1), as required for (46) to hold.205

S6 Limit of large slip region: τc � τs206

We conclude by considering the opposite parametric limit in τ to that considered above: we derive207

an otherwise elusive closed-form expression for Vm in the limit τ � 1. When considering the case of208

small basal yield stress τ , the region of subtemperate slip becomes wide compared with ice thickness.209

Simultaneously, we consider the case of α� 1, Pe� 1, identifying the relevant distinguished limit as210

τPe ∼ α2 � 1 later.211

There are two rescalings required: first, for the mechanical problem and second, for the thermal212

problem. For the mechanical problem, we put213

Ŷ = τY, Ẑ = Z, Û = τU, V̂ = V, Ŵ = τ−1W, P̂ = τ−1P. (S30)

Under this rescaling, the mechanical problem in the boundary layer becomes214

τ2 ∂

∂Ŷ

(
µ̂
∂Û

∂Ŷ

)
+

∂

∂Ẑ

(
µ̂
∂Û

∂Ẑ

)
= 0, (S31a)

τ2 ∂

∂Ŷ

(
2µ̂
∂V̂

∂Ŷ

)
+

∂

∂Ẑ

[
µ̂

(
∂V̂

∂Ẑ
+ τ2∂Ŵ

∂Ŷ

)]
− τ2 ∂P̂

∂Ŷ
= 0, (S31b)

∂

∂Ŷ

[
µ̂

(
∂V̂

∂Ẑ
+ τ2∂Ŵ

∂Ŷ

)]
+

∂

∂Ẑ

(
2µ̂
∂Ŵ

∂Ẑ

)
− ∂P̂

∂Ẑ
= 0, (S31c)

∂V̂

∂Ŷ
+
∂Ŵ

∂Ẑ
= 0, (S31d)

where215

µ̂ =
1

21/n

(∂Û
∂Ŷ

)2

+ τ−2

(
∂Û

∂Ẑ

)2
(1−n)/(2n)

(S32)

for 0 < Ẑ < 1. Assume that there is slip for Ŷ0 < Ŷ < 0, meaning Û > 0 at Ẑ = 0. In that region, we216

then have the following boundary conditions217

µ̂
∂Û

∂Ẑ
= 0, µ̂

(
∂V̂

∂Ẑ
+ τ2∂Ŵ

∂Ŷ

)
= 0, Ŵ = 0 for Ŷ > 0, Ẑ = 0, (S33a)

µ̂
∂Û

∂Ẑ
= τ2, µ̂

(
∂V̂

∂Ẑ
+ τ2∂Ŵ

∂Ŷ

)
= τ2 V̂

Û
, Ŵ = 0 for Ŷ0 < Ŷ < 0, Ẑ = 0. (S33b)

Expanding as Û = Û (0) + τ2Û (1) + . . ., V̂ = V̂ (0) + τ2V̂ (1) + . . ., Ŵ = Ŵ (0) + τ2Ŵ (1) + . . ., we find218

that Û (0) = Û (0)(Ŷ ), V̂ (0) = constant, Ŵ (0) = 0. In other words, a wide region of subtemperate slip219

implies that the plug flow of the ice stream extends past the thermal margin of the ice stream into a220
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rapidly sliding but cold-based region. The axial velocity Û (0) here satisfies the ice-stream-like model221

for a laterally sheared plug flow with constant basal drag:222

∂

∂Ŷ

 1

21/n

∣∣∣∣∣∂Û (0)

∂Ŷ

∣∣∣∣∣
(1−n)/n

∂Û (0)

∂Ŷ

− 1 = 0

for the region Ŷ0 < Ŷ < 0 where Û (0) > 0 (this can be shown by vertical integration of (S31a), bearing223

in mind that µ̂∂Û/∂Ẑ = 0 at the ice stream surface at Ẑ = 1, (27)). One the ice stream side Ŷ > 0,224

we have no basal drag and so the equivalent model is225

∂

∂Ŷ

 1

21/n

∣∣∣∣∣∂Û (0)

∂Ŷ

∣∣∣∣∣
(1−n)/n

∂Û (0)

∂Ŷ

 = 0.

The original matching conditions with the ice stream as Y →∞ (25)1 can then simply be reduced to226

a stress condition at Ŷ = 0,227

1

21/n

∣∣∣∣∣∂Û (0)

∂Ŷ

∣∣∣∣∣
(1−n)/n

∂Û (0)

∂Ŷ
= 1 at Ŷ = 0.

From (S31b) with (S33a)2/(S33b)2, we can see that the across-stream velocity V̂ (0) has no vertical228

profile, either. Vertically integrating the mass balance equation (S31d) with (S33a)3 and (S33b)3 and229

(27), we can further show ∂V̂ (0)/∂Ŷ = 0, or V̂ (0) = constant.230

Matching with the region Ŷ < Ŷ0, where there is no sliding, in principle requires a boundary layer231

around Ŷ < Ŷ0 whose extent is comparable with ice thickness. The appropriate rescaling in that232

boundary layer is233

Y̆ = Y − τ−1Ŷ0, Z̆ = Z, Ŭ = τ−1U, V̆ = V, W̆ = W, P̆ = P. (S34)

We do not give full detail of that boundary layer; the result of matching with (S31) and the far field234

as Y̆ → −∞ is simply the intuitive result that235

Û (0) =
∂Û (0)

∂Ŷ
= 0, V̂ (0) =

∫ 1

0
1− (1− Ẑ)n+1 dẐ =

n+ 1

n+ 2
at Ŷ = Ŷ0,

and we have a solution for the sliding velocity of the form236

Û (0) =
2(Ŷ − Ŷ0)n+1

n+ 1
,

with237

Ŷ0 = −1.

Putting T̂ = T , the corresponding thermal problem in the region with subtemperate slip is then238

at leading order in τ2
239

τVm
∂T̂

∂Ŷ
+ Peτ V̂ (0) ∂T̂

∂Ŷ
− ∂2T̂

∂Ẑ2
=

α

21+1/n

∣∣∣∣∣∂Û∂Ŷ
∣∣∣∣∣
n+1

for 0 < Ẑ < 1, (S35a)

γτVm
∂T̂

∂Ŷ
− κ∂

2T̂

∂Ẑ2
= 0 for Ẑ < 0 (S35b)

subject to the jump conditions240

[
T̂
]+

−
= 0, − ∂T̂

∂Ẑ

∣∣∣∣∣
+

+ κ
∂T̂

∂Ẑ

∣∣∣∣∣
−

= αÛ (0) at Ẑ = 0, Ŷ0 < Ŷ < 0. (S35c)

10



As before, we assume that α � 1 and Pe � 1. With α � 1, we require a short vertical length241

scale α−1 to be able to conduct heat generated at the bed through frictional sliding into the ice, and242

a commensurately large migration velocity to balance vertical conduction at that scale. If we assume243

that lateral inflow can also contribute to energy balance at the same scale, we require the distinguished244

limit245

Peτ ∼ α2

and can rescale as246

qVm = Pe−1Vm, qY = Ŷ − Ŷ0, qZ = αẐ, qT = T̂ (S36)

leading to the leading order diffusive boundary layer problem247

Peτ

α2

(
V̂ (0) + qVm

) ∂ qT

∂ qY
− ∂2

qT

∂ qZ2
= 0 for 0 < Ẑ < 1, (S37a)

γ
Peτ

α2
qVm

∂ qT

∂ qY
− κ∂

2
qT

∂ qZ2
= 0 for Ẑ < 0, (S37b)

subject to the jump conditions248

[
qT
]+

−
= 0, − ∂ qT

∂ qZ

∣∣∣∣∣
+

+ κ
∂ qT

∂ qZ

∣∣∣∣∣
−

= Û (0) =
2qY n+1

n+ 1
at qZ = 0. (S37c)

The outer problem in qZ = αẐ to this advection-diffusion boundary layer problem is simply the leading249

order (in α2 ∼ Peτ) version of (S35), which is the pure advection problem250

Peτ

α2

(
V̂ (0) + qVm

) ∂ qT

∂ qY
= 0 for 0 < Ẑ < 1, (S38a)

γ
Peτ

α2
qVm

∂ qT

∂ qY
= 0 for Ẑ < 0, (S38b)

leading to the conclusion that, outside the diffusive boundary layer with height above or below the251

bed described by qZ ∼ O(1), we simply have the far-field temperature field advected from qY = 0.252

From the rescaling above, we can immediately see that we expect253

Vm = PeqVm =
α2

τ
f

(
Peτ

α2
, γ, κ

)
for some function f (in fact, the dependence on κ and γ can be shown to collapse onto a dependence254

on the product κγ alone). It turns out we can compute the function f exactly, which we do below.255

The boundary conditions (S37c) only hold up to qY = −Ŷ0 = 1. However, in the diffusion problem256

(S37), qY is the time-like variable ( qZ being space-like), and if we are only interested in the solution257

for 0 < qY < −Ŷ0 (the region where subtemperate slip is possible), we can without loss of generality258

treat (S37) as applying for all qY > 0, which permits the problem to be solved by Laplace transforms.259

Define260

f̃(s) = L(f)(s) =

∫ ∞
0

f(qY ) exp(−sqY ) dqY .

Then261

L
(

qY n+1
)

= s−(n+2)Γ(n+ 2)

where Γ is the standard gamma function. Let262

qT = ν − 1 + Θ,

so that (34c) becomes Θ = 0 at qY = 0. Transforming (S37) gives263

sv±Θ̃− ∂2Θ̃

∂ qZ2
= 0
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with v+ = Peτ(qV (0) + qVm)/α2 for qZ > 0, v− = γPeτ qVm/(α
2κ) for qZ < 0, and264

[
Θ̃
]+

−
= 0, − ∂Θ̃

∂ qZ

∣∣∣∣∣
+

− κ ∂Θ̃

∂ qZ

∣∣∣∣∣
−

=
2s−(n+2)Γ(n+ 2)

n+ 1
at qZ = 0.

Matching the outer problem additionally requires Θ̃→ 0 as qZ → ±∞. This has solution265

Θ̃ = A exp
(
∓
√
sv± qZ

)
,

the upper sign being chosen consistently for qZ > 0, the lower for qZ < 0. The flux condition at qZ = 0266

requires that267

A
(√

v+s+ κ
√
v−s

)
=

2s−(n+2)Γ(n+ 2)

n+ 1
.

so that the Laplace transform of Θ at the bed is given by268

Θ̃
∣∣∣

qZ=0
= A =

2s−(n+5/2)Γ(n+ 2)

(n+ 1)
(√

v+ + κ
√
v−
) .

We can now take the inverse Laplace transform; by inspection,269

Θ(qY , 0) =
2Γ(n+ 2)

(n+ 1)Γ(n+ 5/2)
(√

v+ + κ
√
v−
) qY n+3/2.

At qY = −Ŷ0 = 1, we must have temperature reaching the melting point qT = 0, which becomes270

Θ = 1− ν, so the migration velocity is determined by271

2Γ(n+ 2)

(n+ 1)Γ(n+ 5/2)
(√

v+ + κ
√
v−
) = 1− ν,

or, using the definition of v±,272

2Γ(n+ 2)

(n+ 1)Γ(n+ 5/2)

α

(1− ν)
√

Peτ
=

√
V̂ (0) + qVm +

√
κγ qVm.

This is solvable in closed form; here we give only the (relatively simpler) solution for κγ = 1, the case273

also considered in the main paper. Then, also recalling that qVm = Pe−1Vm and V̂ (0) = (n+1)/(n+2),274

we can find the original migration velocity Vm as275

Vm =
α2

τ

[
1

n+ 1

Γ(n+ 2)

Γ(n+ 5
2)
− (n+ 1)2

4(n+ 2)

Γ(n+ 5
2)

Γ(n+ 2)

Peτ

α2

]2

. (S39)

This formula is valid when the term in square brackets is non-negative (the term in square bracket276

being negative corresponds to insufficient heat production or too-rapid advection to cause widening277

of the ice stream).278

References279

Barcilon, V. and MacAyeal, D. R. (1993). Steady flow of a viscous ice stream across a no-slip/free-slip280

transition at the bed. Journal of Glaciology, 39:167–185.281

England, A. (1971). Complex Variable Methods in Elasticity. J. Wiley & Sons, Ltd., London.282

Haseloff, M. (2015). Modelling the migration of ice stream margins. PhD thesis, The University of283

British Columbia, Retrieved from http://hdl.handle.net/2429/54268.284

12



Haseloff, M., Schoof, C., and Gagliardini, O. (2015). A boundary layer model for ice stream margins.285

Journal of Fluid Mechanics, 781:353–387.286

Holmes, M. H. (2013). Introduction to Perturbation Methods. Springer New York.287

Muskhelishvili, N. I. (1992). Singular integral equations. New York: Dover Publications, Inc.288

unabridged republication of 2nd edition published by P. Noordhoff, Groningen, 1953.289

Rice, J. (1967). Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by290

longitudinal shear. Journal of Applied Mechanics, 34(2):287–298.291

Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration292

by notches and cracks. Journal of Applied Mechanics, 35(2):379–386.293

Schoof, C. (2004). On the mechanics of ice-stream shear margins. Journal of Glaciology, 50:208–218.294

Schoof, C. (2012). Thermally driven migration of ice-stream shear margins. Journal of Fluid Mechan-295

ics, 712:552–578.296

Suckale, J., Platt, J. D., Perol, T., and Rice, J. R. (2014). Deformation-induced melting in the margins297

of the West Antarctic ice streams. Journal of Geophysical Research, 119:1004–1025.298

13


	Numerical scheme to determine the migration velocity
	Velocity, shear heating and temperature close to the cold-temperate transition
	The velocity field close to the transition from no slip to free slip
	The outer temperature problem for strong heat production
	Mechanical problem for a small slip region: 1/(n+1) 1
	Limit of large slip region: cs

