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Abstract. An important feature of the Arctic is large spatial
heterogeneity in active layer conditions, which is generally
poorly represented by global models and can lead to large
uncertainties in predicting regional ecosystem responses
and climate feedbacks. In this study, we developed a spa-
tially integrated modeling and analysis framework combin-
ing field observations, local-scale (∼ 50 m resolution) active
layer thickness (ALT) and soil moisture maps derived from
low-frequency (L+P-band) airborne radar measurements,
and global satellite environmental observations to investi-
gate the ALT sensitivity to recent climate trends and land-
scape heterogeneity in Alaska. Modeled ALT results show
good correspondence with in situ measurements in higher-
permafrost-probability (PP≥ 70 %) areas (n= 33;R = 0.60;
mean bias= 1.58 cm; RMSE= 20.32 cm), but with larger
uncertainty in sporadic and discontinuous permafrost ar-
eas. The model results also reveal widespread ALT deep-
ening since 2001, with smaller ALT increases in northern
Alaska (mean trend= 0.32± 1.18 cm yr−1) and much larger
increases (> 3 cm yr−1) across interior and southern Alaska.
The positive ALT trend coincides with regional warming and
a longer snow-free season (R = 0.60± 0.32). A spatially in-
tegrated analysis of the radar retrievals and model sensitiv-
ity simulations demonstrated that uncertainty in the spatial
and vertical distribution of soil organic carbon (SOC) was
the largest factor affecting modeled ALT accuracy, while soil
moisture played a secondary role. Potential improvements
in characterizing SOC heterogeneity, including better spatial

sampling of soil conditions and advances in remote sensing
of SOC and soil moisture, will enable more accurate predic-
tions of active layer conditions and refinement of the model-
ing framework across a larger domain.

1 Introduction

Regional warming in the northern high latitudes is occurring
at roughly twice the global rate, leading to widespread per-
mafrost degradation (Jorgenson et al., 2006; Romanovsky et
al., 2010) and substantial changes in hydrologic and ecosys-
tem processes, including earlier and potentially longer grow-
ing seasons (Kim et al., 2012), expansion of tundra shrub
cover (Tape et al., 2006), changes in lake and wetland ar-
eas (Smith et al., 2005), and increasing thermokarst devel-
opment (Liljedahl et al., 2016) and fire disturbances (Grosse
et al., 2011). Thawing of permafrost can lead to widespread
changes in the terrestrial water cycle, including alteration
of water storage in surface reservoirs (including lakes, wet-
lands, and ponds) and the active layer (Walvoord et al.,
2016). These hydrologic shifts will likely trigger profound
changes to almost every aspect of the Arctic biophysical sys-
tem.

Understanding the linkages between changes in the per-
mafrost active layer and hydrologic and ecological processes
is hampered by inconsistent information on active layer prop-
erties and dynamics over large regional extents. Traditional
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estimates of permafrost active layer conditions have relied on
detailed ground surveys and measurements from sparse mon-
itoring sites (Romanovsky et al., 2010; Osterkamp, 2007).
More recent attempts have also incorporated ground-based
remote sensing, such as ground-penetrating radar (GPR) and
electrical resistivity measurements, but only over limited
local extents (Sjöberg et al., 2015; Jorgenson and Grosse,
2016). Several studies have used empirical models driven
by in situ ground observations and other geospatial datasets
to provide fine-scale (< 100 m resolution) estimates of ac-
tive layer and near-surface permafrost conditions (Mishra
and Riley, 2014; Pastick et al., 2015). However, the accuracy
of these methods is limited by the ability of sparse ground
measurements representing landscape heterogeneity, and the
resulting empirical models provide only limited insight and
mechanistic understanding of underlying processes affecting
active layer conditions. Detailed process models have been
developed to address the above limitations, while the model
accuracy is constrained by a lack of information for effec-
tive model parameterization, limited process understanding,
and coarse spatial scales of regional drivers (Yi et al., 2015;
Jafarov and Schaefer, 2016). Particularly, large uncertainties
remain in characterizing regional variability of subsurface
soil organic carbon (SOC) content due to limited ground ob-
servations of this parameter in the Arctic region (Ping et al.,
2008; Burnham and Sletten, 2010) and its effect on ground
temperature evolution.

An important feature of permafrost-affected soils is the
large spatial heterogeneity in permafrost and active layer
conditions (Zona et al., 2011), which is generally poorly rep-
resented in global models. Capabilities for effective assess-
ment and monitoring of active layer dynamics at the land-
scape scale (≤ 1 km) are currently lacking but are needed to
understand processes that govern the permafrost distribution
in global carbon and climate models (Slater and Lawrence,
2013; Schuur et al., 2015; Jiang et al., 2016). Satellite remote
sensing allows for regional detection and monitoring of sur-
face and subsurface conditions related to active layer prop-
erties (Jorgenson and Grosse, 2016), and regionally refined
satellite-data-driven models offer a potential means for re-
gional assessment and monitoring of permafrost active layer
properties at suitable landscape scales. The ongoing NASA
Arctic-Boreal Vulnerability Experiment (ABoVE) field cam-
paign is collecting a wide range of datasets intended to sup-
port regional integration and synthesis of geospatial infor-
mation and associated data products generated from airborne
and spaceborne remote sensing, and detailed ground obser-
vations. A major goal of the ABoVE is to develop a mod-
eling framework to improve representation of key processes
in the Arctic and boreal landscape and to study potential cli-
mate feedbacks via scaling of local processes to broader spa-
tial extents using multi-scale and multi-sensor remote sens-
ing (Goetz et al., 2011).

Consistent with the ABoVE modeling goal, we devel-
oped a spatially integrated process modeling and data anal-

ysis framework to characterize regional patterns and recent
(2001–2015) changes in active layer thickness (ALT) and un-
derlying environmental controls across Alaska. The frame-
work combines field measurements, local-scale (∼ 50 m res-
olution) active layer maps derived from low-frequency air-
borne radar remote sensing, and landscape level (≥ 1 km res-
olution) environmental observations from global satellite mi-
crowave and optical-infrared sensors. Satellite sensor records
including land surface temperature (LST) and snow cover
extent (SCE) from MODIS (MODerate resolution Imaging
Spectroradiometer) were used to drive a detailed 1-D soil
heat transfer model, with soil thermal conductivity defined
using daily surface and root zone soil moisture observations
from the SMAP (Soil Moisture Active and Passive) mission.
The model was used to estimate regional patterns and re-
cent changes in permafrost extent and ALT across Alaska
at landscape scale (∼ 1 km). A detailed model sensitivity as-
sessment was conducted to determine the major sources of
uncertainty in model-simulated ALT and the primary factors
influencing landscape scale ALT heterogeneity. Local-scale
ALT and soil moisture maps derived from low-frequency
(L+P-band) airborne radar backscatter measurements from
NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) and Airborne Microwave Observatory of Sub-
canopy and Subsurface (AirMOSS) sensors were used to
evaluate the model sensitivity to finer-scale patterns in soil
moisture and soil organic fraction.

2 Methods

2.1 The modeling framework

The model simulations were conducted using a detailed soil
process model (Rawlins et al., 2013; Yi et al., 2015) primar-
ily driven by global satellite observation records including
land surface “skin” temperature (LST), SCE, and surface to
root zone (≤ 1 m depth) soil moisture (SM). The soil process
model defines up to 23 distinct soil layers down to 60 m be-
low surface. The model uses a numerical approach to solve
the 1-D heat transfer equation with phase change included
to simulate snow/ground and subsurface thermal dynamics
and temperature profiles. The model also accounts for the im-
pacts of SOC content on soil thermal properties. The model
was successfully applied to the pan-Arctic region for map-
ping permafrost extent and active layer dynamics, but at a rel-
atively coarse (∼ 25 km) spatial resolution (Yi et al., 2015).
In the previous study, global coarse-resolution (∼ 0.5◦) re-
analysis data, including surface air temperature and precip-
itation, were used as primary model inputs; the model soil
thermal properties were regulated by soil moisture content
simulated by a water balance model coupled with the soil
thermal model (Rawlins et al., 2013). In the current study,
however, the satellite-based LST time series were used with
snow depth and density data from global reanalysis as ma-
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Table 1. Geospatial datasets used as primary inputs for the soil process model over Alaska.

Data source Spatial Temporal period Temporal
resolution resolution

Surface temperature MOD11A21 1 km 2000–present 8-day
Snow depth/density MERRA-2 0.5◦ 2000–present Daily
Snow cover extent MOD10A22 500 m 2000–present 8-day
Soil moisture SMAP 9 km 2001–2015 (Nature Run) Daily

2015–present (L4SM)

1 Wan (2015). 2 Hall and Riggs (2016).

jor model drivers, with soil thermal properties parameterized
using soil moisture profiles from a global data assimilation
system.

The soil process model was run at 1 km resolution and
8-day time step, consistent with the MODIS LST and SCE
inputs (2000–2015). The MODIS LST and SCE data were
largely affected by clouds in the study area; therefore 8-
day temporal composite data were used as the model in-
puts. Our test runs indicated relatively small differences
between model-simulated soil temperatures at 8-day and
daily time steps (Fig. S1). Primary model inputs (Ta-
ble 1) included MODIS (Collection 5) 8-day composite
1 km LST (MOD11A2; Wan, 2015) and 500 m SCE records
(MOD10A2; Hall and Riggs, 2016), SMAP 9 km Nature Run
(Version 4) and Level 4 daily surface (≤ 5 cm depth) and
root zone (0–1 m depth) soil moisture (L4SM; Reichle et al.,
2016), and daily snow depth and snow density from Modern-
Era Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) global (∼ 0.5◦ resolution) reanalysis
data (Gelaro et al., 2017). Model simulations were conducted
over the Alaskan domain, encompassing an extent of approx-
imately 1.21 million km2. Prior to the model simulations, all
datasets were re-gridded to a consistent 1 km Albers equal-
area projection and 8-day time step for the Alaskan domain.
The soil freezing/thawing depth for each 8-day time step
was determined as the soil depth crossing the 0 ◦C thresh-
old based on the model-simulated soil temperature profile.
The ALT was defined as the maximum soil thawing depth
throughout the year.

2.2 Datasets

2.2.1 Model inputs

The MODIS LST and SMAP L4SM products were used to
define model boundary conditions and soil thermal proper-
ties. MODIS LST was limited to clear-sky conditions, and
cold biases were generally found with the MODIS LST data
in the Arctic region during the winter season (Westermann
et al., 2012). We derived an empirical correction scheme to
mitigate the cold bias in MODIS LST data using MERRA-
2 total cloud fraction and 2 m air temperature (T2M) data.
The MODIS LST data were first aggregated to 0.5◦ res-

olution; a linear-regression equation was then derived be-
tween MERRA-2 cloud fraction and the difference between
MODIS LST and MERRA-2 T2M during the sub-zero pe-
riod for each biome type. The resulting regression equations
were then applied to the original MODIS LST records for the
sub-zero period. After bias correction, the MODIS mean LST
bias during winter was reduced from −3.66 to −0.87 ◦C rel-
ative to in situ air temperature observations in Alaska. The
SMAP Nature Run and L4SM surface and root zone soil
moisture records were combined to define a continuous soil
moisture time series for the entire study period. The SMAP
Nature Run soil moisture record was used with the opera-
tional L4SM record because the SMAP L4SM operational
record does not begin until March 2015. The SMAP Nature
Run is generated using the same GMAO GEOS-5 land sur-
face scheme and surface meteorology as the L4SM product
(Reichle et al., 2017) and showed minimal discontinuity with
the L4SM product over the Alaska domain. However, the Na-
ture Run soil moisture product is derived without the benefit
of model-assimilated SMAP brightness temperature observa-
tions.

MERRA-2 daily snow depth and density data were used
to account for the effects of seasonal snow cover evolu-
tion on the ground thermal regime, with changes in seasonal
snow thermal properties derived from snow density (Yi et
al., 2015). The soil thermal regime is particularly sensitive
to changes in snow cover conditions during snow onset and
offset periods, and large-scale reanalysis snow datasets gen-
erally have difficulty capturing snow cover spatial hetero-
geneity, especially during seasonal transition periods (West-
ermann et al., 2017). Therefore, the MODIS 500 m SCE
data were used to adjust the 1 km snow depth and den-
sity estimates downscaled from the global reanalysis data
(i.e., MERRA-2) during the snow onset/offset period. The
snow cover status for each 1 km pixel was defined by choos-
ing the observations that occurred most often based on the
500 m MOD10A2 product. There are substantial areas af-
fected by cloud cover in the Arctic region, especially dur-
ing the snow season; to minimize cloud effects, pixels identi-
fied as cloud contaminated were reclassified as either snow-
or non-snow-covered if the two temporally adjacent periods
were both identified as cloud free and indicated consistent
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snow- or non-snow-covered conditions. During snow melt-
ing and accumulation periods, each coarse MERRA-2 grid
cell is generally not fully covered by snow, and the MODIS
SCE product was used to identify snow-free pixels and adjust
the downscaled snow depth/density data for each 1 km pixel
within the 0.5◦ MERRA-2 grid. A more sophisticated down-
scaling scheme should account for the difference between the
MERRA-2 snow cover fraction and MODIS SCE. However,
the timing of snow offset/onset derived from the downscaled
1 km MERRA-2 snow depth data showed similar spatial and
temporal variations to those of the MODIS data (Fig. S2),
indicating that the simple downscaling scheme was gener-
ally effective. However, relatively large differences were ob-
served in the timing of snow onset between the MODIS
and MERRA-2 records, which was attributed to a greater
prevalence of shallow and sporadic snow cover during ini-
tial snowpack development in the autumn.

Other ancillary model inputs included the 30 m national
land cover database 2011 (Jin et al., 2013), 50 m SOC es-
timates for Alaska (to 1 m depth; Mishra et al., 2016), and
the global 9 km mineral soil texture data developed for the
SMAP L4SM algorithm (De Lannoy et al., 2014). The dom-
inant land cover type within each 1 km pixel was used to de-
fine the modeling domain, with open water and perennial
ice/snow areas excluded from the model simulations. The
soil texture and SOC data were used to define the soil prop-
erties including thermal conductivities and heat capacities.
The SMAP soil texture dataset was generated using multi-
ple soil databases but primarily used information from the
State Soil Geographic (STATSGO2) dataset in Alaska (De
Lannoy et al., 2014). The sand and clay fraction data lay-
ers of this dataset were resampled to 1 km resolution and
used to calculate soil thermal and hydraulic properties for the
mineral soils (Lawrence and Slater, 2008). The Alaska SOC
map was derived from a geospatial model involving more
than 500 soil profile observations and spatial environmental
variables, which provides estimates of Alaskan SOC stocks
comparable to previous studies but available at a much finer
(50 m) resolution (Mishra et al., 2016). The SOC data were
distributed through the top 10 model layers (≤ 1.05 m depth)
following an exponentially decreasing curve (Jobbagy and
Jackson, 2000; Hossain et al., 2015) to calculate the soil car-
bon fraction of each soil layer as described in Sect. 2.3.1.
The soil physical properties for each soil layer were assumed
to be a weighted combination of values of mineral soils and
pure organic soils based on the estimated soil carbon fraction
following Yi et al. (2015).

2.2.2 In situ data

The soil thermal model, as a component of a coupled per-
mafrost hydrology model, was previously validated using in
situ soil temperature and soil moisture data from more than
20 eddy covariance (EC) tower sites across the pan-Arctic
region (Yi et al., 2015). In this study, the model was val-

idated using a limited set of in situ soil temperature mea-
surements from three eddy covariance tower tundra moni-
toring sites in Alaska (Table S1). The modeled ALT esti-
mates were also validated against in situ ALT measurements
from the regional CALM (Circumpolar Active Layer Mon-
itoring) network (Brown et al., 2000). The three tower sites
were selected mainly for having relatively good-quality sur-
face meteorology and temperature measurements, and sup-
porting information on ground surface conditions. All three
tower sites are underlain by permafrost, with relatively large
soil organic layer thickness (OLT) and shallow seasonal thaw
depth (∼ 40 cm) (Euskirchen et al., 2012; Nakai et al., 2013;
Oechel et al., 2014). For the tower site comparisons, the soil
process model was parameterized and driven by local tower
site meteorological and OLT observations when available.
The OLT observations were used to define the depth of the
model soil layers with 100 % SOC fraction; this simplifying
assumption was made in the absence of more detailed SOC
profile measurements and to facilitate the model parameteri-
zation process. There are ∼ 60 in situ CALM sites across the
Alaska study domain, with 35 sites located in areas with per-
mafrost probability (PP) ≥ 70 % estimated from an ancillary
permafrost map (Pastick et al., 2015).

2.2.3 Airborne radar retrievals

We conducted an integrated analysis of in situ CALM mea-
surements, soil process model simulations, and airborne
radar retrievals of soil moisture and ALT over a regional
flight transect along the Dalton Highway (DH) in northern
Alaska (Fig. S3; 148.39–149.05◦W, 68.78–70.40◦ N). The
airborne radar retrievals were derived from combined (L+P-
band) radar backscatter measurements (∼ 50 m resolution)
acquired from coordinated UAVSAR and AirMOSS flights
acquired in October 2015, in preparation for the NASA
ABoVE campaign. The combination of low-frequency ver-
tically and horizontally polarized P-band (430 MHz) and
L-band (1.2 GHz) radar backscatter retrievals provides en-
hanced sensitivity to active layer conditions, with a greater
degree of freedom for distinguishing multiple soil parame-
ters (Du et al., 2015; Chen et al., 2016). The airborne ALT re-
trievals were derived from the radar backscatter observations
using a three-layer (frozen–thawed–permafrost) soil dielec-
tric model, which was parameterized to represent a frozen
surface layer overlying a deeper thawed layer for partially
frozen conditions in October. The thawed portion of the ac-
tive layer in October was assumed to have the same depth to
permafrost as the fully thawed active layer in August. An iter-
ative model inversion scheme was used to estimate multiple
active layer parameters by minimizing differences between
the observed radar backscatter measurements and radar scat-
tering model simulations. Initial sensitivity tests showed the
capability of the model inversion in resolving subsurface ac-
tive layer properties including surface freeze–thaw status,
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Figure 1. Flow diagram describing the regional model sensitivity runs, accounting for uncertainties in total SOC content, SOC vertical
distribution, SM, and snow density (ρsnow). Three SOC vertical allocation schemes were represented, including “surface”, baseline, and
“even” allocation scenarios (Table S2).

ALT, and soil moisture in relation to independent in situ mea-
surements from CALM sites.

2.3 Model sensitivity analysis

2.3.1 Regional sensitivity analysis

SOC fraction, soil moisture, and snow cover conditions are
among the most important factors controlling permafrost ac-
tive layer conditions at the landscape scale (Lawrence and
Slater, 2008; Jafarov et al., 2012; Zhang et al., 2014; Yi et al.,
2015). Therefore, model sensitivity analyses were conducted
to investigate the ALT sensitivity to uncertainties in regional
SOC fraction, soil moisture, and snow density (Fig. 1). The
modeled ALT uncertainties were calculated as the standard
deviation between the model baseline simulations and a set
of model sensitivity runs conducted over the study period by
adding uncertainties into the regional SOC map (including
total SOC content and vertical distribution), SM, and snow
density data used as model inputs.

For the SOC fraction, we accounted for uncertainties as-
sociated with the total SOC content and vertical distribution
within the top 1 m soil profile due to substantial uncertainties
in these properties from available soil inventory records for
the Arctic region (Ping et al., 2008; Burnham and Sletten,
2010). An uncertainty range of ±5 kg C m−2 was assigned
to the baseline SOC value from the ancillary SOC inventory
data, based on reported uncertainties and comparisons with
other Alaskan SOC estimates (Mishra et al., 2016). For each
total SOC scenario, i.e., high-, baseline-, and low-SOC sce-
narios, we performed three simulations to account for the un-
certainties in the SOC vertical distribution: “surface”, base-
line, and “even” allocation scenarios, with a lower SOC den-
sity within surface soils in the baseline and even allocation
scenarios (Fig. 1). The total SOC content was assumed to
decrease exponentially with depth along the soil profile (Job-
bagy and Jackson, 2000; Meersmans et al., 2009; Hossain

et al., 2015); two parameters, including the SOC density at
the surface and a vertical decay parameter (k), were used to
determine the soil carbon density for each model soil layer
(Meersmans et al., 2009):

SOCC(z)= SOC0 · exp(−k · z), (1)

where SOCC is the estimated soil organic carbon density
(kg C m−3) at a given soil depth, z (cm); SOC0 and k rep-
resent the surface SOC density and vertical decay rate (m−1)

with increasing soil depth, respectively. The k values were
determined based on the reported SOCC profile for differ-
ent biome types (Jobbagy and Jackson, 2000; Meersmans et
al., 2009; Hossain et al., 2015). Boreal forest is character-
ized as having generally greater surface SOC accumulation
than tundra for relatively undisturbed conditions (Hossain et
al., 2015) and was thus assigned a larger k value (Fig. S4).
The prescribed k values for the three SOC vertical distribu-
tion scenarios range from 0.03 to 0.05 m−1 for boreal forest
and from 0.01 to 0.03 m−1 for tundra and other vegetation
biomes (Table S2). The soil carbon or organic fraction for
each soil layer was estimated as

fsc,i = SOCC(zi)/SOCCmax, (2)

where SOCC(zi) is the estimated soil carbon density at the
center depth (zi) of soil layer i and SOCCmax = 130 kg m−3

is the maximum soil carbon density of peat soils (Farouki,
1981). Mineral soils may also contain a high soil carbon
density but low soil organic fraction due to much higher
bulk density. Therefore, the soil carbon fraction was adjusted
based on an empirical relationship between soil carbon con-
centration and bulk density (Hossain et al., 2015) when the
SOCC is below 40 kg C m−3.

There are large uncertainties associated with soil moisture
and snow cover parameters derived from satellite observa-
tions and reanalysis data. Initial validation of the SMAP Na-
ture Run and L4SM soil moisture products indicated an un-
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Table 2. In situ CALM sites covered by the UAVSAR and AirMOSS airborne radar flights along the Dalton Highway (DH) in October 2015.
The information on OLT and soil moisture conditions was obtained from in situ site measurements. The local-scale (∼ 50 m resolution) radar
ALT retrievals were averaged within an 18× 18 pixel window (∼ 1 km× 1 km) to compare with the 1 km soil model ALT simulations. The
correlations (R) between the in situ observations and model ALT estimates were calculated for the 2001–2015 study period.

OLT Soil moisture ALT (cm) R

Site name Location (cm) condition In situ Radar Model (in situ vs. model)

West Dock 1 ha grid 70◦22′ N, 148◦33′W 34 Wet 37.0 29.7± 0.13 33.0 0.27
Deadhorse 70◦10′ N, 148◦28′W 15 Wet 73.0 44.2± 0.10 44.0 0.61∗

Franklin Bluff 69◦41′ N, 148◦43′W 23 Wet 68.0 41.6± 0.11 44.0 0.53∗

Sagwon Hills MNT 69◦26′ N, 148◦40′W 9± 1.2 Moist 57.0 36.8± 0.08 53.0 0.53∗

∗ p < 0.05.

biased root mean square error (RMSE) below 0.05 m3 m−3,
though this was primarily assessed for mineral soil type con-
ditions within the continental USA (Reichle et al., 2017).
For the model sensitivity analysis, a soil wetness uncertainty
(±10 %) was assigned to the SMAP Nature Run and L4SM
soil moisture records based on prior global soil moisture as-
sessments using MERRA reanalysis data (Yi et al., 2011).
The±10 % wetness uncertainty translates into an uncertainty
of ∼ 0.04 m3 m−3 for mineral soils and ∼ 0.08 m3 m−3 for
organic soils, which typically have a higher porosity. An
uncertainty level of ±25 % was assigned to the MERRA-
2 snow density estimates based on comparisons with snow
density observations derived from GPS (Global Positioning
System) L-band backscatter signals from six Plate Boundary
Observatory (PBO) sites across Alaska (Fig. S5). However,
the uncertainty in snow density was limited to ±20 kg m−3

during the initial snow accumulation period, with snow den-
sity generally ranging from 100 to 200 kg m−3. Compared
with snow density, snow depth shows much larger temporal
variability (Sturm et al., 2010), which makes it difficult to as-
sign temporally varying uncertainty levels for the snow depth
estimates. However, the above scheme partially accounts for
uncertainties in the snow depth data due to a positive corre-
lation between snow depth and density at longer timescales
(McCreight and Small, 2014).

For both model baseline simulations and sensitivity runs,
the model was spunup for 50 years to bring the top 10 m soil
temperature profile into dynamic equilibrium with model in-
puts for the year 2000, followed by a transit run from 2001
to 2015. Different model spin-up schemes may have a large
impact on the model simulations; therefore, an additional ini-
tialization scheme was tested for the baseline model simula-
tion. Because there were no data available from MODIS and
SMAP Nature Run records prior to 2000, the model was first
initialized using MERRA-2 surface meteorology including
air temperature, SM, and snow data from 1980 to 1999, fol-
lowed by a model transit run from 2000 to 2015 using the
MODIS LST, SMAP SM, and MERRA-2 snow data. The
MODIS LST and MERRA-2 surface air temperature records
showed overall consistent regional mean temperatures during

the overlapping period. The two model spin-up schemes pro-
duced very similar regional ALT estimates for the year 2000
initial conditions; therefore, only the model simulations and
results based on the first spin-up scheme were presented.

2.3.2 Modeled ALT sensitivity to landscape
heterogeneity within the airborne flight transect

An integrated analysis of in situ ground measurements, air-
borne radar retrievals, and soil process model simulations
was conducted to verify modeled ALT simulations in rela-
tion to other observations and investigate the ALT sensitiv-
ity to spatial variability in soil organic carbon fraction and
soil moisture. We selected four in situ CALM sites located
within the airborne radar DH sub-region acquired in Octo-
ber 2015 for ALT comparisons with model simulations and
radar retrievals (Table 2). Additional CALM sites are located
within the DH sub-region (Fig. S3); these sites are gener-
ally located near the validation sites but had very different
landscape properties (including SOC fraction and soil sat-
uration degree) from the model inputs and radar retrievals,
and were therefore not selected for the model comparisons.
In particular, the Sagwon Hills MAT site was excluded due
to potentially large uncertainties in the radar ALT retrievals
(21.0± 0.07 cm) due to reduced radar penetration and ALT
sensitivity under very wet conditions (radar SM retrievals:
0.47 m3 m−3) as indicated by a significant negative correla-
tion (R =−0.47, p < 0.1) between the radar ALT and SM
retrievals within the ∼ 1 km grid cell (18× 18 pixels).

A model sensitivity analysis was conducted within the
DH sub-region, which covers the area between 69.5 and
70◦ N. This region was selected on the basis of having rela-
tively higher radar SM and ALT retrieval accuracy (Fig. S3).
Above 70◦ N, the radar retrievals indicate very low SM levels
(< 0.2 m3 m−3), likely due to active layer freezing in Octo-
ber. Below 69.5◦ N, the very wet soil conditions may intro-
duce larger uncertainties in the radar ALT retrievals as dis-
cussed above. For the model sensitivity analysis, we first cal-
ibrated the soil porosity and active layer soil saturation de-
gree over the DH sub-region by minimizing RMSE differ-
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Figure 2. Model-simulated mean (2001–2015) soil thawing depth at the boreal forest (a, AK-PFR) and tundra (b, AK-Imn) sites, relative to
in situ ALT values. At the AK-PFR site, the in situ ALT value reported by Nakai et al. (2013) was different from the ALT value calculated
from in situ soil temperature (Tsoil) measurements, while at the tundra site the in situ ALT was calculated from observations at the Imnavait
Creek 1 km grid CALM site encompassing the AK-Imn tower site. Vertical error bars and dark gray shading indicate 1-standard-deviation
variability in soil thaw depth or ALT during the study period.

ences between the spatially aggregated radar ALT retrievals
and model ALT simulations derived using regionally aver-
aged SOC, LST, and snow property inputs. We then com-
pared the spatial distributions of the 1 km aggregated air-
borne radar ALT retrievals and the 1 km model simulations
to determine the ALT sensitivity to relatively coarse regional
drivers including LST, soil wetness (% volumetric), and SOC
fraction. Three model sensitivity runs were performed (Ta-
ble 3). The model was first driven using 1 km MODIS LST
inputs, but with regionally averaged SOC, snow, and soil
wetness conditions (run 1). The model was then driven us-
ing both 1 km MODIS LST and soil wetness derived using
the above soil porosity estimate and radar-retrieved volumet-
ric soil moisture, with regionally averaged SOC and snow
conditions (run 2). The SOC map (Mishra et al., 2016) indi-
cates high SOC levels (mean= 45 kg C m−2)with low spatial
variability ranging from 40 to 50 kg C m−2 in this area. How-
ever, the soil inventory record may not adequately account
for fine-scale variability in the SOC content that could result
from local soil wetness variability (Mishra and Riley, 2015).
Therefore, an additional model simulation (run 3) was con-
ducted with similar drivers to run 1, but with a larger range
of variability in the SOC fraction. Specifically, the run 3 sce-
nario assumes the regional SOC distribution follows the sta-
tistical distribution of radar-retrieved soil moisture across the
DH sub-region from 69.5 to 70◦ N (Fig. S3c), resulting in
an estimated SOC range from 21 to 69 kg C m−2 and a mean
value of 45 kg C m−2. This statistical distribution was similar
to the OLT distribution observed from field sampling data in
northern Canada (Zhang et al., 2014).

Table 3. Model drivers for the three model sensitivity runs con-
ducted within the Alaska DH sub-region. The model LST and SM
inputs were derived from MODIS (MOD11A2) observations and
airborne radar SM retrievals.

LST SM SOC

Run 1 1 km Regional mean Regional mean
Run 2 1 km 1 km Regional mean
Run 3 1 km Regional mean Statistical distribution∗

∗ The statistical distribution of SOC followed the statistical distribution of 1 km
radar SM retrievals for areas between 69.5 and 70◦ N (Fig. S3c).

3 Results

3.1 Regional ALT validation

3.1.1 Comparison with in situ measurements

The model-simulated soil temperatures at the selected tower
sites using local site meteorology and prescribed SOC frac-
tions based on in situ OLT data showed favorable perfor-
mance in relation to the in situ measurements, with mean R
values above 0.90 and mean RMSE values less than 2.5 ◦C
(Table S3; Figs. S6–S7). The model-simulated maximum soil
thaw depth (i.e., ALT) was within the ALT uncertainty range
from the in situ data (Fig. 2). At the boreal forest site, the
model-simulated ALT (81± 15 cm) during the study period
(2001–2015) was much larger than the ALT value reported
at the tower site (∼ 43 cm, Nakai et al., 2013); however, the
model-simulated ALT was close to the ALT (74±17 cm) cal-
culated from the in situ soil temperature measurements dur-
ing the observation period (2011–2013). The seasonality of
the model-simulated soil thaw depth also generally followed
the pattern of soil thaw depth calculated from the in situ soil
temperature observations (Fig. S8). However, limited deep
soil temperature measurements at the site (only available
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Figure 3. Model-simulated ALT and its performance against in situ CALM sites for different permafrost probability (PP) zones: (a) model-
simulated 1 km mean ALT map from 2001 to 2015; (b) a satellite-based permafrost probability map (Pastick et al., 2015); (c) comparisons of
model-simulated ALT against in situ CALM sites for different PP zones; (d) the changes of model and in situ observed ALT with permafrost
probability. The areas with ALT greater than 300 cm depth are shown in dark gray (a). In panel (b), the areas with PP≥ 70 % are shown in
gray, while areas outside of the PP classification are shown in black. The blue line in panel (b) indicates the location of the airborne DH radar
flight transect used for model evaluation (Fig. 4). The error bars in (c) represent the standard deviation of either model-simulated or in situ
observed ALT during the overlapping period.

at 40 and 100 cm) may contribute significant uncertainty to
the calculated soil thawing depth. At the two tundra sites,
the model-simulated ALT generally falls within the range of
ALT values reported at the tower sites. At the Imnavait Creek
tundra site (AK-Imn, Table S1), the model-simulated mean
ALT (47±8 cm) was slightly shallower than the observations
(53± 5 cm) at the Imnavait Creek 1 km grid CALM site en-
compassing the tower site. At the Atqasuk tundra site (US-
Atq, Table S1), the model-simulated mean ALT (37± 9 cm)
was close to the in situ ALT (∼ 40 cm) reported by Oechel
et al. (2014). The model simulations at the two tundra sites
showed overall later soil thaw onset in spring and earlier au-
tumn soil freeze onset than the boreal forest site, resulting in
a shallower ALT.

The model-simulated mean ALT generally increased with
decreasing latitude and PP indicated by a satellite- and
soil-inventory-based PP map (Pastick et al., 2015; Fig. 3b),
with relatively shallow ALT values in areas with higher
PP, including the Alaska North Slope and Seward Penin-
sula, and deeper ALT values in sporadic and isolated
permafrost areas (i.e., PP< 50 %), including most of the
Alaska interior and southwestern region (Fig. 3). The model
showed better performance against in situ ALT measure-
ments from CALM sites with higher PP. Sites without a
consistent presence of permafrost within 3 m surface soils
during the study period were excluded from the compar-
isons and were mostly distributed in areas with PP< 50 %.
A total of 51 CALM sites meeting the validation crite-
ria were used for the model comparisons, while 33 of
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Figure 4. Comparison of radar ALT retrievals with in situ CALM site observations and model simulations within the Alaska Dalton Highway
(DH) sub-region defined from the airborne radar (AirMOSS, UAVSAR) flight transect in October 2015: (a) the radar-retrieved ALT map
from the combined (P+L-band) low-frequency radar backscatter measurements, with areas indicated as open water, perennial ice/snow, and
developed areas masked out; (b) comparisons of the in situ ALT observations, radar retrievals, and model simulations at the CALM sites,
including West Dock (WD), Deadhorse (DHS), Franklin Bluff (FB), and Sagwon Hills MNT (SH); and (c) comparisons of the ALT spatial
distributions derived from the radar retrievals and model simulations for the DH latitudinal zone between 69.5 and 70◦ N. Different model
runs were driven using different regional drivers (Table 3). ALT_avg is the regional mean of radar ALT retrievals, with error bars representing
the standard deviation.

these sites were located in areas with PP≥ 70 %. The mod-
eled ALT was generally deeper than the ALT observations
for sites located in areas with PP< 70 %. The modeled
ALT showed relatively low correspondence with the in situ
measurements when all 51 sites were included (R = 0.46;
mean bias= 17.39 cm; RMSE= 40.51 cm), but with bet-
ter agreement for sites located in areas with PP≥ 70 %
(R = 0.60; mean bias= 1.58 cm; RMSE= 20.32 cm). Larger
differences between model simulations and in situ ALT mea-
surements in areas with lower permafrost probability are
not unexpected due to strong surface heterogeneity in per-
mafrost conditions, leading to larger discrepancy between
model simulations representing a single ALT value for each
1 km2 grid cell and the point-scale measurements. In those
areas, the satellite- and soil-inventory-based PP map indi-
cated permafrost occurrence within 1 m surface soils well
below 100 %, while the in situ measurements showed ALT
generally shallower than 1 m (Fig. 3d).

3.1.2 Integrated analysis of radar retrievals and model
simulations

The modeled ALT results were similar to the in situ ALT
measurements and airborne radar retrievals within the DH
sub-region (Fig. 4). The DH sub-region is located within the
northern Alaska continuous permafrost zone (PP≥ 90 %).
The model simulations, radar retrievals, and in situ measure-
ments all showed the lowest ALT values (< 40 cm) at the
northernmost site (West Dock) within the DH sub-region,
but with larger differences at the other DH sites. The model
simulations were very close to the radar ALT retrievals at
the Deadhorse and Franklin Bluff sites, and similar to the
in situ observations at the Sagwon Hills site, though the
radar ALT retrievals indicated shallower ALT conditions than
both model results and observations at this site. The radar
retrievals likely underestimated ALT for the Sagwon Hills
area due to very wet soil conditions observed at this site
(SM> 0.4 m3 m−3, Fig. S3), which reduced microwave pen-
etration depth and active layer sensitivity. The soil moisture
impact on the radar ALT retrievals is indicated by a signifi-
cant negative correlation (R <−0.45, p < 0.1) between the
radar ALT and SM retrievals at both Sagwon Hills sites. Rel-
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Figure 5. Model-simulated ALT trends and correlation with LST thawing degree days from 2001 to 2015: (a) simulated ALT trends over the
Alaska domain, where areas with ALT> 3 m are shown in dark gray, and (b) the distribution of ALT trends and correlations with MODIS
LST degree days during the snow-free season (upper panel) within different permafrost probability (PP) zones (Fig. 3b). Vertical error bars
(dark gray) indicate 1 standard deviation for the regional ALT trend and correlation coefficient, respectively. The number of 1 km pixels
represented within each PP zone is shown in the lower panel of (b).

atively large differences were observed between the modeled
ALT values and in situ observations at the Deadhorse and
Franklin Bluff sites, though the model results were similar
to the radar ALT retrievals at these sites. Despite these dif-
ferences, the modeled ALT showed overall consistent inter-
annual variability (R > 0.5, p < 0.1) for all of the DH sub-
region sites except West Dock, which had a deeper organic
layer and smaller ALT interannual variability than the other
sites (Fig. S9 and Table 2).

The regional model sensitivity analyses for the DH sub-
region between 69.5 and 70◦ N indicate the important role
of the SOC fraction on the model-simulated ALT pattern
(Fig. 4c and Table 3). The DH sub-region was selected for
the model sensitivity analysis due to lower uncertainties in
the airborne radar ALT and SM retrievals as discussed in
Sect. 2.3.2. Using the spatial average of the radar ALT re-
trievals (39.59± 0.06 cm), the soil model estimated a mean
soil porosity of 0.61 m3 m−3 and mean soil wetness of 63 %
for the active layer, which was close to the soil wetness es-
timates for the same area derived from the SMAP L4SM
product (62–66 %). The soil model simulations derived us-
ing the 1 km MODIS LST inputs and regional mean SOC
and SM inputs (run 1) showed a slightly smaller mean ALT
of 37.90± 0.04 cm. Model simulations derived using the
1 km MODIS LST and airborne radar SM retrievals as inputs
(run 2) showed a similar ALT distribution to the run 1 results,
but with larger spread (40.36±0.11 cm). The soil model sim-
ulations based on similar inputs to run 1 but accounting for

the statistical distribution of the regional SOC inputs (run 3)
resulted in a more consistent ALT spatial distribution with
the radar ALT retrievals (mean ALT= 41.61±0.07 cm). The
effect of snow cover heterogeneity on the ALT distribution
was not investigated here due to the coarse resolution of the
MERRA-2 snow data (∼ 0.5◦) and thus small differences in
the interpolated 1 km snow depth and density data within the
sub-region.

3.2 Regional ALT sensitivity to environmental
variables

The model results indicated widespread ALT deepening
during the 2001–2015 study period, with 79.2 % of sim-
ulated permafrost (ALT< 300 cm) areas showing positive
trends (Fig. 5). However, only ∼ 24.0 % of estimated per-
mafrost areas showed significant (p < 0.1) positive ALT
trends due to large interannual variability in model-simulated
ALT and relatively short (15-year) data record. Very few
areas (< 0.3 % of the domain) showed significant nega-
tive ALT trends. The model simulations showed relatively
smaller ALT trends (0.32±1.18 cm yr−1) in continuous per-
mafrost areas of northern Alaska, which has a generally
colder polar climate and more stable permafrost conditions.
The model results indicated much larger positive ALT trends
(> 3 cm yr−1) across central and southern Alaska, which is
characterized by warmer climate conditions and more spo-
radic permafrost conditions (PP< 50 %). Both modeled ALT
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Figure 6. Recent trends (days yr−1, 2001–2015) in the annual snow-free period derived from the MODIS snow cover extent (SCE) product
(MOD10A2, a) and the MERRA-2 snow depth data after filtering using the MOD10A2 SCE observations (b).

and associated temporal trends generally increase with de-
creasing permafrost probability (Figs. 3 and 5). Relatively
large spatial variability in the estimated ALT trend also oc-
curs in areas with lower permafrost probability.

The ALT trends and spatial variations are mainly af-
fected by the accumulated thawing degree days during the
snow-free period (R = 0.60± 0.32, Fig. 5b and Table S4).
Model-simulated ALT during the study period was signif-
icantly correlated with MODIS LST thawing degree days
during the snow-free period, with regional mean correla-
tions above 0.51 (p < 0.1) for areas with PP≥ 20 %. The
MODIS LST record indicates a strong warming trend in
spring (0.095±0.09 ◦C yr−1) and a non-significant warming
trend in summer (0.006± 0.066 ◦C yr−1), which leads to a
longer snow-free season and associated increase in the heat
input to the soil. The warming trend is commensurate with
a positive trend in MODIS LST thawing degree days dur-
ing the snow-free season (0.415± 0.982 ◦C yr−1). Both the
MODIS snow cover product and the MERRA-2 snow depth
data show significant lengthening of the snow-free season in
central and southwestern Alaska (Fig. 6), mainly due to ear-
lier snow offset in spring. The autumn snow onset trend is
more variable across the region, and an overall earlier snow
onset in northern Alaska mainly contributes to a shorter snow
season in those areas. A reduced correlation between MODIS
LST thawing degree days and model-simulated ALT in areas

with PP< 20 % is likely caused by larger uncertainties in the
model simulations in these areas as discussed below.

3.3 Uncertainties in regional ALT simulations

The model sensitivity analysis indicated significant uncer-
tainties influencing estimated ALT patterns and trends from
several sources (Fig. 7). The model-simulated ALT is associ-
ated with large uncertainties in areas with lower SOC fraction
(particularly for surface conditions) and lower permafrost
probability. Uncertainties in the model-simulated ALT due
to uncertainties in the total SOC content increases from a
few centimeters (∼ 5 %) in continuous permafrost areas to
approximately 50 cm (∼ 45 %) in sporadic permafrost areas.
ALT uncertainties due to the soil carbon vertical distribu-
tion show a similar pattern, but with slightly lower magni-
tude. In areas where PP< 70 %, the model-simulated mean
ALT increased by 26 %, and the loss of model-simulated
permafrost areas with ALT< 300 cm doubled with reduced
total SOC content (Table S5 and Fig. 8). In comparison,
model-simulated areas with ALT< 300 cm in areas where
PP≥ 70 % showed negligible response to SOC variability
due to predominantly shallower ALT in these areas. Here,
the ALT< 300 cm threshold is used to define the boundary
of model estimated near-surface permafrost extent over the
Alaska domain. Larger variability in the model-simulated
mean ALT and accelerated permafrost loss in areas defined
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Figure 7. Model estimated ALT uncertainty associated with uncer-
tainties in SOC fraction, SM, and snow cover properties: (a) spa-
tial pattern of model-simulated ALT uncertainty due to uncertainty
in the total SOC content; the areas without consistent near-surface
(< 300 cm) permafrost from all sensitivity runs are shown as dark
gray. (b) shows the distribution of model mean ALT uncertainties
associated with uncertainties in total SOC content, soil carbon al-
location, soil moisture, and snow density for different permafrost
zones (Fig. 3b). The ALT uncertainties were calculated as the stan-
dard deviation between the model baseline simulations and the sen-
sitivity runs by adding uncertainties in the regional SOC map, soil
moisture, and snow density data (Fig. 1).

by PP< 70 % were also observed when less SOC was allo-
cated in the surface soils (e.g., even allocation scenario). The
inverse relationship between surface SOC fraction and ALT
in the model reflects the strong insulating effect of surface
organic soils.

The results indicated large model uncertainty associated
with the representation of snow cover conditions, particularly
the low-snow-density scenario (Table S6 and Fig. 7b). For
the low-snow-density scenario, the model-simulated ALT in-
creased by 56 % from 61 cm (baseline) in the more con-
tinuous permafrost zone (PP≥ 70 %) and by 49 % from
146 cm in areas with PP< 70 %, while the model-simulated
loss of areas with ALT< 300 cm in the permafrost zone
(PP< 70 %) from 2001 to 2015 doubled compared with the

baseline simulation. The model results also showed signifi-
cant (p < 0.01) loss of areas with ALT< 300 cm even in ar-
eas with PP≥ 70 % for the low-snow-density scenario. How-
ever, the model may overestimate uncertainties associated
with the low-snow-density scenario. The MERRA-2 snow
density generally ranges from 200 to 250 kg m−3 during the
snow season, which is near the lower range of previous esti-
mates especially for maritime and tundra snow cover (Sturm
et al., 2010; Bormann et al., 2013). The MERRA-2 snow den-
sity did not show a significant low bias compared with the
PBO site observations; however, the MERRA-2 snow depth
data generally showed positive bias compared with the PBO
snow depth data (not shown), which may lead to an overes-
timation of MERRA-2 snow density. Therefore, the model
simulations from the low-snow-density scenario may signif-
icantly overestimate snow insulation effects and ALT uncer-
tainty, especially in southwestern Alaska, with more variable
snow cover conditions.

The uncertainty contributed from the SMAP SM data to
modeled ALT is relatively small compared with SOC distri-
bution and snow density contributions (Fig. 7b). The model
simulations for the “high-SM” scenario promoted generally
deeper ALT levels and slightly larger loss of permafrost ar-
eas (ALT< 300 cm) in the permafrost zone (PP< 70 %) than
the baseline simulations due to enhanced effects of SM on
soil heat transfer and heat storage (Table S5). The ALT sen-
sitivity to SM showed limited variability under different SOC
levels (Fig. S10). However, the accuracy of SMAP SM data
in boreal and tundra ecosystems requires further investiga-
tion. In addition, the SMAP SM data did not account for SM
redistribution associated with permafrost degradation during
the study period, which may have a significant impact on soil
heat transfer especially in discontinuous and sporadic per-
mafrost areas.

4 Discussion

Our model estimates of regional permafrost active layer con-
ditions over Alaska are generally consistent with previous
studies. A study using an empirical data fusion and model-
ing approach incorporating extensive field observations and
spatial environmental datasets (Pastick et al., 2015) esti-
mated that near-surface (< 100 cm) permafrost encompasses
38 % of mainland Alaska, with a mean ALT of 50 cm. Our
model baseline simulations indicate a similar near-surface
(< 100 cm) permafrost extent encompassing ∼ 40 % of the
Alaska domain, with a mean ALT of 58 cm. Another study
using spatially referenced soil profile data and environmen-
tal variables produced ALT estimates across Alaska ranging
from 14 to 93 cm, with a spatial average of 46 cm (Mishra
and Riley, 2014). A follow-on study estimated the mean ALT
across Alaska to be between 42 and 49 cm with 95 % confi-
dence (Mishra et al., 2016). Both studies indicate a dominant
existence of near-surface permafrost across the Alaskan do-
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main, which is larger than our model results and the previ-
ous study by Pastick et al. (2015). Our model predicts rela-
tively stable permafrost conditions in continuous permafrost
areas during the study period, which is consistent with previ-
ous reports (Osterkamp, 2007; Jafarov et al., 2012; Nicol-
sky et al., 2017). Our estimate of the ALT trend in those
areas (0.32± 1.18 cm yr−1) is also comparable with a re-
gional modeling experiment in northern Alaska (Nicolsky et
al., 2017).

Our model results indicate widespread active layer deep-
ening in the study domain from 2001 to 2015, with gen-
erally larger positive trends (> 3 cm yr−1) in discontinuous
and sporadic permafrost areas, including central and south-
ern Alaska, and smaller trends (∼ 0.32 cm yr−1) over colder
and more continuous permafrost areas of northern Alaska
(Fig. 5). Our analysis indicates that a longer snow-free pe-
riod and concurrent surface warming are mainly responsible
for ALT deepening during the study period. Previous studies
have also noted that the ALT is primarily determined by the
cumulative thermal history of the ground surface during the
summer thaw season (Zhang et al., 2005; Osterkamp, 2007).
A few studies based on satellite observations and model-
ing indicate that regional warming and a longer thaw sea-
son have led to widespread permafrost degradation and ac-
tive layer deepening in permafrost areas (Yi et al., 2015; Park
et al., 2016). Alaska shows a strong spring warming trend
during the study period, which results in significantly earlier
snowmelt and a longer snow-free season. Early snow melt-
ing in the spring increases energy inputs into soils and gener-
ally enhances soil warming, which may promote ALT deep-
ening and permafrost degradation due to the snow cover–
climate feedback (Lawrence and Slater, 2010). On the other
hand, the snow onset shows more variable trends across the
region, with northern Alaska generally showing an earlier
snow onset trend. However, the relationship between autumn
snow onset and soil warming is more variable depending on
the timing of snowfall and local climate conditions (Yi et
al., 2015). Early snow onset may enhance thermal buffering

of cold surface temperatures and promote soil warming in
colder climate zones (Zhang, 2005).

Our results indicated large uncertainties in model esti-
mated ALT associated with uncertainties in both the spatial
variability and vertical distribution of SOC. Soil organic mat-
ter is a key factor affecting permafrost active layer processes
due to its effects on soil thermal and hydraulic properties
(Lawrence and Slater, 2008). There are substantial differ-
ences among available SOC datasets in northern permafrost
areas, partially due to insufficient field data sampling and
strong SOC variability associated with local vegetation, ter-
rain, disturbance, and soil moisture heterogeneity (Ping et
al., 2008; Johnson et al., 2011). A relatively fine-resolution
(∼ 50 m) SOC dataset generated using more than 500 soil
profiles in Alaska was used to parametrize the model SOC
distributions. However, the SOC dataset may still under-
estimate SOC variability associated with large heterogene-
ity characteristic in boreal and Arctic landscapes. An inte-
grated analysis of the airborne radar retrievals and soil pro-
cess model sensitivity runs over the DH sub-region (Fig. 4)
showed that the model can better simulate ALT spatial het-
erogeneity after introducing a statistical distribution of the
regional SOC spatial pattern. The model sensitivity analy-
sis also showed that uncertainty in the vertical SOC distri-
bution contributes significantly to the model estimated ALT
uncertainty (Fig. 8) due to strong insulation effects of surface
organic soils (Jafarov and Schaefer, 2016). The SOC con-
tent was assumed to decrease exponentially with increasing
depth from the surface (Eq. 1), which may significantly un-
derestimate the SOC of deep soils in areas strongly affected
by cryoturbation (Ping et al., 2008; Burnham and Sletton,
2010). However, this process should have a relatively lim-
ited effect on the estimated soil carbon fraction due to gen-
eral increases in soil bulk density and thus lower soil carbon
concentration with depth (Hossain et al., 2015). Better infor-
mation on the spatial and vertical distribution of SOC stocks
would provide the single largest improvement in ALT accu-
racy, enabling more accurate predictions of permafrost active
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layer processes and climate feedbacks in regional and global
carbon and climate models (Zhang et al., 2014; Mishra and
Riley, 2015).

The effects of soil organic matter on ground temperature
evolution are also influenced by soil moisture content, which
affects soil thermal conductivity and heat exchange processes
(Hinkel and Nelson, 2003; Nicolsky et al., 2017). Our study
may underestimate the modeled ALT uncertainties associ-
ated with SMAP SM data. Large uncertainty is associated
with global reanalysis or satellite SM data (Yi et al., 2011).
This uncertainty is due to many factors, including insufficient
understanding of the effect of permafrost-thaw-induced tran-
sitions on active layer hydrology (Rawlins et al., 2013) and
the predominance of wet soil conditions and standing wa-
ter in permafrost landscapes, which constrains satellite mi-
crowave penetration and sensitivity to active layer properties
(Du et al., 2015). The SMAP SM data did not account for
soil drainage and soil moisture redistribution with permafrost
thaw and ALT deepening (Walvoord et al., 2016), which may
result in overestimation of ALT trends in areas with deep ac-
tive layers and wet soil conditions, characteristic of much of
western Alaska (Fig. 5). Our initial model sensitivity anal-
ysis over the DH sub-region did not show significant im-
provement in ALT results using fine-resolution (∼ 50 m) air-
borne radar SM retrievals. The lack of model improvement
may be due to uncertainty in the dielectric conversion model
parameters used for the radar SM retrieval, but it may also
indicate a need for better parameterization of soil moisture
effects on model soil heat transfer processes. A close asso-
ciation between SOC and local topographic attributes, in-
cluding soil wetness, has been reported (Mishra and Riley,
2015); this may explain why model simulations derived using
a statistical SOC distribution following the radar SM pattern
produced better ALT performance than the radar retrievals.
Other potential geophysical retrievals from multi-frequency
radar remote sensing – including SOC, freeze–thaw, and SM
profile (Du et al., 2015; Bartsch et al., 2016) – may enable
improved model representation of processes affecting per-
mafrost active layer conditions.

Other uncertainties in the model inputs and structure may
also result in large uncertainties in our regional ALT esti-
mates. Large-scale satellite observations and global reanaly-
sis data are unable to resolve finer-scale microclimate varia-
tions influencing the ground thermal regime, including spa-
tially complex snow cover properties influenced by local to-
pography, vegetation, and winds (Liston and Sturm, 1998;
Gisnås et al., 2016). These effects may be more pronounced
over more complex terrain, including southwest Alaska,
where the model shows larger uncertainties in ALT simula-
tions and trends (Fig. 5). The model uses satellite skin tem-
perature (i.e., MODIS LST) to define the upper-boundary
conditions, which does not account for vegetation canopy
effects on ground thermal conditions and may add signifi-
cant uncertainties in dense vegetation areas. Increasing dis-
turbance from thermokarst and wildfires alters microclimate

and SM conditions, vegetation cover, and SOC stocks, trig-
gering a series of physical and ecological changes, all closely
related to the dynamics of ground-ice evolution and per-
mafrost degradation (Jorgenson et al., 2006; Osterkamp et
al., 2009; Grosse et al., 2011). These effects are not ad-
equately represented by the current model. Additional air-
borne radar sampling targeting regional disturbance gradi-
ents may provide the necessary information for representing
these processes in the regional modeling framework.

5 Conclusions

We developed a satellite-based modeling framework for per-
mafrost active layer mapping at landscape scale (∼ 1 km)
and applied it to the Alaskan domain. Local-scale (∼ 50 m
resolution) maps of ALT and SM derived from combined
low-frequency (L+P-band) airborne radar remote sensing
were used with in situ ground measurements to evaluate the
model simulations. The model estimated ALT was more sim-
ilar to in situ observations and airborne radar retrievals in
more continuous permafrost areas (PP≥ 70 %) than in lower-
permafrost-probability areas. The model simulations indi-
cated widespread active layer deepening since 2001, with
larger positive trends in discontinuous and sporadic per-
mafrost areas over central and southern Alaska, and gener-
ally smaller trends in colder and more stable permafrost ar-
eas of northern Alaska. The ALT deepening is mainly driven
by surface warming and regional trends toward a longer
snow-free season. Areas with lower SOC fraction, especially
in surface soil layers, showed larger ALT uncertainties and
stronger sensitivity to regional warming trends. A spatially
integrated analysis of the longwave (P+L-band) airborne
radar retrievals and model simulations confirmed the impor-
tant role of SOC spatial variability and vertical profiles in af-
fecting ALT accuracy. Additional AirMOSS/UAVSAR radar
measurements will become available from the ABoVE air-
borne campaign in Alaska and western Canada, representing
more extensive climate, terrain, and vegetation conditions,
and allowing for further testing and refinement of the model-
ing framework across a larger domain. Potential mapping of
surface organic layer, freeze–thaw, and soil moisture profiles
using the combined low-frequency radar data may enable
substantial improvements in the way coarser landscape mod-
els represent key processes and sub-grid spatial heterogene-
ity, enabling more accurate predictions of boreal and Arctic
environmental changes.

Data availability. The Alaskan ALT maps produced by this study
are available at http://ntsg.umt.edu and will be archived and dis-
tributed for public access through the NASA ABoVE archive at the
NASA ORNL DAAC (https://daac.ornl.gov/). The radar ALT and
SM retrievals are available upon request. Other data used in this
study – including MERRA-2 surface meteorology, SMAP SM, and
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MODIS snow cover and LST – were obtained from NASA Earth-
data (https://earthdata.nasa.gov/).

The Supplement related to this article is available online
at https://doi.org/10.5194/tc-12-145-2018-supplement.
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