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Abstract. Meltwater from the Greenland Ice Sheet con-
tributed 1.7–6.12 mm to global sea level between 1993 and
2010 and is expected to contribute 20–110 mm to future sea
level rise by 2100. These estimates were produced by re-
gional climate models (RCMs) which are known to be ro-
bust at the ice sheet scale but occasionally miss regional- and
local-scale climate variability (e.g. Leeson et al., 2017; Med-
ley et al., 2013). To date, the fidelity of these models in the
context of short-period variability in time (i.e. intra-seasonal)
has not been fully assessed, for example their ability to sim-
ulate extreme temperature events. We use an event identifi-
cation algorithm commonly used in extreme value analysis,
together with observations from the Greenland Climate Net-
work (GC-Net), to assess the ability of the MAR (Modèle At-
mosphérique Régional) RCM to reproduce observed extreme
positive-temperature events at 14 sites around Greenland. We
find that MAR is able to accurately simulate the frequency
and duration of these events but underestimates their mag-
nitude by more than half a degree Celsius/kelvin, although
this bias is much smaller than that exhibited by coarse-scale
Era-Interim reanalysis data. As a result, melt energy in MAR
output is underestimated by between 16 and 41 % depend-
ing on global forcing applied. Further work is needed to pre-
cisely determine the drivers of extreme temperature events,
and why the model underperforms in this area, but our find-
ings suggest that biases are passed into MAR from bound-
ary forcing data. This is important because these forcings are
common between RCMs and their range of predictions of
past and future ice sheet melting. We propose that examin-
ing extreme events should become a routine part of global
and regional climate model evaluation and that addressing

shortcomings in this area should be a priority for model de-
velopment.

1 Introduction

Since the 1990s, the Greenland Ice Sheet has shifted from
a state of near mass balance to one of significant mass loss
(Shepherd et al., 2012; Hanna et al., 2013a; van den Broeke
et al., 2016), contributing approximately 10 % to the mea-
sured global sea level rise during the last 2 decades (Church,
2013). Since 2010, the rate of mass loss from Greenland
has increased and the ice sheet has experienced episodes of
rare and extreme surface melt (Nghiem et al., 2012; Hanna
et al., 2014; Tedesco et al., 2013). For example in 2012,
the summer melt extent reached 98.6 % of the entire ice
sheet: thought to be the greatest melt extent in over a cen-
tury (Nghiem et al., 2012). In addition to directly removing
more of the ice sheet into the sea, melting reduces the reflec-
tivity of the ice sheet and can warm the perennial snowpack
(through latent heat release when the meltwater refreezes),
both of which act as a positive feedback to further enhance
melt. These processes also alter the dielectric properties of
the ice sheet surface, which makes it more difficult to mea-
sure surface height change using satellite-borne radar instru-
ments (McMillan et al., 2016). An understanding of the loca-
tion, frequency, duration and magnitude of melting is there-
fore necessary to (1) understand the ice sheet’s response to
climate change, (2) interpret contemporary measurements of
ice sheet volume change and (3) constrain predictions of fu-
ture ice sheet state.
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Mass lost through meltwater runoff and gained through
snowfall together comprises the ice sheet’s surface mass bal-
ance (SMB), which is typically assessed at the ice-sheet-
wide scale using regional climate models (RCMs). RCMs
act as physically based interpolators of relatively coarse res-
olution climate reanalysis data and produce high-resolution
estimates in areas where the local climate exhibits high spa-
tial variability, i.e. ice sheet margins (Noel et al., 2016).
Alternative statistical downscaling techniques fulfil a sim-
ilar purpose and give broadly comparable results (Wilton
et al., 2017; Vernon et al., 2013). RCMs can also make
high-resolution predictions of future climate, when bound-
ary forcing is applied by global climate model (GCM) out-
put instead of reanalysis data. In the last IPCC report, the
MAR, RACMO2 and MM5 RCMs reported that, whilst
SMB remains positive (net increase in mass due to surface
processes), increases in melting were responsible for a sea
level contribution of 0.23–0.64 mm yr−1 during 2005–2010
(Church et al., 2013). RCMs are known to perform well when
compared to integrated quantities, for example mean annual
melt measured at weather stations or total mass loss from the
ice sheet measured by GRACE (van den Broeke et al., 2016).
However, fidelity at the regional or seasonal scales does not
necessarily translate to the local scale (e.g. Medley et al.,
2013). Extreme melt events, for example, tend to be localised
in time (typically only lasting for a day or so). Whilst RCM
predictions of melt extent during extreme events have been
found to be reliable (Tedesco et al., 2011), an assessment of
their ability to simulate the frequency, duration and magni-
tude of these events, and how this might affect their projec-
tions of future ice sheet change, has yet to be performed.

In this paper, we use advanced statistical techniques for ex-
treme event identification to compile a statistical climatology
of extreme temperature events on Greenland since the 1990s
using data from 14 automatic weather stations (AWSs) form-
ing part of the Greenland Climate Network (GC-Net; Stef-
fen et al., 1996). Note that these are distinct from extreme
melt years as it is possible to have multiple extreme tem-
perature events in a year. We then use these data, together
with temperature estimates from the MAR regional climate
model (Fettweis et al., 2017), to evaluate the model’s abil-
ity to capture the frequency, duration and magnitude of these
events when forced by climate reanalysis and by GCM data.
Finally, we estimate melt energy available at the GC-Net sta-
tions during this time using a positive degree-day (PDD) sum
and assess the degree to which discrepancies between ob-
served and modelled characteristics of extreme events affects
MAR-based estimates of melt energy.
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Figure 1. Data coverage in GC-Net temperature record.

2 Methods and data

2.1 Greenland Climate Network data

GC-Net consists of 18 AWSs distributed around the ice sheet.
We refer the reader to Steffen et al. (1996) for details but
briefly summarise here. The first station (Summit) began op-
eration in 1995, with others coming online at various times
since then. The AWSs measure a range of meteorological
variables, of which the temperature and pressure time se-
ries are the most complete. The GC-Net stations each have
four temperature sensors (two different instruments mounted
at two different heights); here we use data from the type-
E thermocouple mounted at position 1 at all sites except
NGRIP (North Greenland Ice Core Project), and Saddle dur-
ing 2010–2016, for which we used data from the type-E ther-
mocouple mounted at position 2. Measurements are taken
hourly; we use these data to calculate daily maximum and
mean values for compatibility with MAR output.

Our analysis focuses on 14 of the 18 stations; we found the
remaining 4 stations to have temperature time series which
were either too short or too patchy for robust statistical anal-
ysis. Figure 1 shows the data coverage at each of the 14 sta-
tions studied here, and Table 1 gives the total number of years
of data available when gaps are excluded. We attribute these
missing data to equipment failure and assume that it is un-
related to the occurrence of extreme high temperatures. As
such we treat these data gaps as “missing at random” and
ignore them in our analysis. Since most of the missing peri-
ods cover whole years, rather than just a summer or winter
period, this assumption is reasonable.

2.2 MAR regional climate model

The MAR model is an RCM developed and extensively eval-
uated to study the present Greenland climate and SMB from
the beginning of the last century (Fettweis et al., 2017) as
well as to perform future projections of Greenland Ice Sheet
SMB for the last IPCC report till the end of this century (Fet-
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Table 1. Discrepancy between elevation of AWSs and elevation of the closest grid cell in MAR. Number of years of data (excluding gaps)
is also given. A lapse-rate-based correction to MAR temperature data (assuming 0.71 ◦C per 100 m; Steffen and Box, 2001) is also given;
negative values occur when the grid cell in MAR is lower down in the atmosphere, i.e. is too warm.

Melt N years MAR GC-Net MAR–GC-Net Lapse rate
zone of data m m m corr ◦C

Summit Dry snow 16.62 3201 3254 −53 −0.38
JAR Ablation 15.93 932 962 −30 −0.21
Humboldt Dry snow 12.44 2020 1995 25 0.18
TUNU-N Dry snow 17.38 2028 2113 −85 −0.60
Swiss Camp Ablation 15.47 1245 1149 96 0.68
Crawford Percolation 13.16 1920 2022 −102 −0.72
NASA-U Dry snow 12.48 2293 2369 −76 −0.54
DYE2 Percolation 19.58 2097 2165 −68 −0.48
Saddle Percolation 17.70 2475 2559 −84 −0.60
South Dome Percolation 15.89 2833 2922 −89 −0.63
NASA-E Dry snow 18.13 2606 2631 −25 −0.18
NGRIP Dry snow 7.40 2921 2950 −29 −0.21
NASA-SE Percolation 11.55 2331 2425 −94 −0.67
JAR2 Ablation 10.85 252 568 −316 −2.25

tweis et al., 2013). It is fully coupled with a snow energy
balance model dealing with the energy and mass exchanges
between surface, snow, ice and atmosphere. The MAR ver-
sion 3.5 used here has been extensively evaluated in Fettweis
et al. (2017) with daily in situ PROMICE-based AWS mea-
surements over 2008–2010, daily satellite-derived melt ex-
tents over 1979–2010, and SMB measurements and ice cores
over 1958–2010. We chose to use MARv3.5 in this study
since this is the model version which was used to make the
most recent set of estimates of future ice sheet change (Fet-
tweis et al., 2013). We refer to Fettweis (2007) and Fettweis
et al. (2013, 2017) for more details about MAR and its sur-
face scheme.

Here, we use data from MAR simulations forced with
the ERA-Interim reanalysis (e.g. Fettweis et al., 2017), and
with the GCMs CanESM2 (Canadian Earth System Model),
MIROC5 (Model for Interdisciplinary Research On Climate)
and NorESM1 (Norwegian Earth System Model) over 1995–
2015. CanESM2, MIROC5 and NorESM1 have been found
to be the best models (with respect to ERA-Interim over
1980–1999) from the CMIP5 database over Greenland from
which 6-hourly outputs were available (Fettweis et al., 2013).
MAR is forced every 6 h at its lateral boundaries with tem-
perature, humidity, wind and surface pressure. Sea surface
temperature and sea ice extent are also prescribed into the
MAR integration domain from the forcing data every 6 h.
Hereafter we refer to MAR variants with forcing by Era-
Interim, NorESM1, CanESM2 and MIROC5 as MAR–Era,
MAR–Nor, MAR–Can and MAR–MIR respectively. MAR–
Era data are available continuously during our study period
(1995–2015 inclusive). For the GCM-forced model runs, we
use historical simulations until 2006 and simulations per-
formed under forcing by the Representative Concentration

Pathway 8.5 (RCP8.5) climate change scenario (van Vuuren
et al., 2011) thereafter. This is reasonable because observed
greenhouse gas concentrations followed the RCP8.5 scenario
during this period, and in any case the differences between
the RCP scenarios during 2006–2015 are very small. For
comparison with the GC-Net data we pick the MAR model
grid cell (25 km by 25 km resolution) closest to the AWS lo-
cation in terms of latitude and longitude of the cell centre.
The MAR cell centre is typically at a lower elevation than
the AWS, according to the MAR DEM and the measured
elevation of the AWS, and so we apply a lapse-rate-based
correction to MAR temperature data (0.71 ◦C per 100 m of
elevation difference; Steffen and Box, 2001). We restrict the
model time series at each station to periods where GC-Net
data are also available.

2.3 Extreme value analysis

Extreme value analysis provides a toolbox of methods for
the identification and statistical modelling of extreme events
(Coles, 2013), i.e. events that are unusually large or small
when compared to the central behaviour of a dataset. For a
given site and a given data type (observations, MAR–Era,
MAR–MIR, MAR–Nor and MAR–Can), we identify the ex-
treme events using a site- and type-specific threshold applied
to the maximum daily temperature time series. To enable a
fair comparison, the threshold is taken always to be the 90 %
quantile of the dataset in question (Table 2), and an extreme
event is deemed to start once the maximum daily temperature
exceeds this threshold. The event ends after the temperature
has been below the threshold for three consecutive days. This
method of event identification is known as the runs method
(Smith and Weissman, 1994). It follows that the durations, as
well as both frequencies and magnitudes, of events are ran-
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Table 2. Extreme event threshold (90th percentile) in each time series.

Observations MAR–Era MAR–Can MAR–MIR MAR–Nor

Summit −8.26 −8.7 −8.22 −8.67 −10.09
JAR 2.99 3.03 3 2.83 2.43
Humboldt −3.24 −3.56 −3.74 −4.18 −4.93
TUNU-N −4.86 −4.79 −5.01 −5.04 −5.61
Swiss Camp 2.44 1.89 1.97 1.85 1.28
Crawford −0.55 −0.68 −0.42 −0.98 −1.9
NASA-U −3.3 −2.81 −3.13 −3.45 −4.11
DYE2 −0.33 −0.81 −0.79 −1.24 −1.76
Saddle −2.24 −2.98 −3.27 −3.64 −4.22
South Dome −3.12 −3.63 −3.84 −4.73 −4.91
NASA-E −7.39 −7 −6.85 −6.88 −8.41
NGRIP −8.74 −8.44 −7.97 −8.64 −9.76
NASA-SE −2.15 −2.62 −3.01 −2.94 −3.8
JAR2 4.89 13.51 12.95 12.88 11.93

dom. Note that here we take the magnitude of an event to be
the largest of the daily maxima within that event.

2.4 Positive degree-day sum

Melting is most appropriately calculated as a function of the
surface energy balance; however measurements of variables
required to calculate the surface energy balance (e.g. net ra-
diation, wind speed) are not consistently available at the GC-
Net stations. Positive degree days are an estimate of the mag-
nitude and duration of above-zero temperature events and
are typically well correlated with melting (e.g. Braithwaite,
1995; Huybrechts et al., 1991). Here we calculate PDDs for
both observed and modelled temperatures and take this to
be a reasonable approximation for melt energy. Diurnal tem-
perature variability is modelled using Eq. (1), and PDDs are
calculated by integrating Eq. (1) with T > 0 ◦C.

T = Asin(ϕt)+B, (1)

where A is daily maximum temperature, B is daily mean
temperature and ϕ is 1 day. Daily mean and maximum 2 m
temperature are output by MAR; for GC-Net data, daily
mean and maximum are calculated based on hourly data as
detailed above.

2.5 Melt zone definitions

We use independent definitions of the ablation, percolation
and dry snow zones first identified in McMillan et al. (2016)
using RACMO2.3 simulations of SMB and surface melt.
Briefly, the area of the ice sheet lying below the equilibrium
line in a majority of years between 2009 and 2014 is defined
as the ablation zone. The area of ice where melt did not ex-
ceed 5 mm w.e. on any day during this period is defined as
the dry snow zone, with the remainder being classed as the
percolation zone. Using these definitions, we find areas of

0.23, 0.61 and 0.80 million km2 for the ablation, percolation
and dry snow zones respectively.

3 Results

3.1 Extreme temperature events

We apply extreme value analysis to observed daily maximum
temperatures from GC-Net in order to compile a statisti-
cal climatology of extreme temperature events on Greenland
(Table 3). Each location is considered independently, and the
timing of statistically extreme events is not necessarily con-
temporaneous between stations. Extreme events are charac-
terised in terms of their frequency, duration and magnitude;
we use “duration” and “magnitude” to refer to median values
across all events observed/modelled. We assess these char-
acteristics in the context of station geography, i.e. elevation,
latitude and melt zone (see methods). Each of the three char-
acteristics is dependent on elevation; however the nature of
that dependence and the role that latitude and melt zone play
in the relationship is different for each (Fig. 2). Extreme tem-
perature events occur 4–8 times per year, and event frequency
is negatively correlated with elevation in south Greenland;
events become less frequent the higher the station is on the
ice sheet. Event frequency is positively correlated with eleva-
tion in north Greenland/the dry snow zone (Fig. 2a). Events
last between 5 and 10 days, and duration is positively corre-
lated with elevation for all stations (Fig. 2b). However events
tend to last longer (by ∼ 1 day) at stations in the dry snow
zone/north Greenland than at stations at similar elevations
in the percolation zone/south Greenland. Event magnitude is
negatively correlated with elevation at all stations (Fig. 2c),
but elevation has a stronger influence on event magnitude in
the dry snow and ablation zones (−4.4± 0.3 ◦C km−1) than
in the percolation zone (−1.8± 0.4 ◦C km−1).
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Figure 2. Frequency, duration and magnitude of extreme events ob-
served at GC-Net automatic weather stations. Shapes indicate loca-
tion: south-west – circle; north-west – square; north-east – cross;
south-east – triangle. Saddle is located on the ice divide and we
choose to represent it as a south-east station. Colours indicate melt
zone: red – ablation zone; black – percolation zone; blue – dry snow
zone. In (a), solid grey line represents a linear fit to data from the
ablation and percolation zone stations, whilst dashed line represents
a linear fit to dry snow zone station data. In (b), solid grey line repre-
sents a linear fit to all data. In (c), solid grey line represents a linear
fit to ablation zone stations, dashed grey line represents a linear fit
to dry snow zone stations and dotted grey line represents a linear fit
to percolation zone stations. In (d) contours delineate lower limit of
percolation (pink) and dry snow (purple) zones.

We compare the degree to which MAR is able to cap-
ture the observed climatology of extreme events at GC-Net
stations by repeating the same extreme value analysis with
output from each of the MAR model variants (Fig. 3). In
addition to considering each station independently, we also
consider each model variant independently; i.e. there is no
common event mask. This is because the GCM-forced model
variants (MAR–MIR, MAR–Nor and MAR–Can) are de-
signed to simulate climatic variability over typical climatic
periods like 20–30 years, which is not necessarily contem-
poraneous with observed variability in a given time period.
We exclude JAR2 (Jakobshavn Ablation Region 2) from the
remainder of this analysis due to the large discrepancy in el-
evation between the station and the corresponding grid cell
in MAR (316 m, Table 1) and the dependency we find be-
tween elevation and extreme event characteristics (Fig. 2).
Whilst all of the four model variants typically simulate the
duration of extreme events reasonably well (i.e. within 1 day
per event), they underestimate event frequency at most of
the stations (Fig. 3). This is most notable for the GCM-
forced model variants MAR–MIR, MAR–Nor and MAR–
Can, which underestimate event frequency by 1.12, 0.75
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temperature events as simulated by each model variant at each sta-
tion. Frequency is denoted by the height of each box, duration is
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by the dashed black boxes. Box colours indicate the departure of the
modelled magnitude from the observed value, blue colours indicate
an underestimate and red colours indicate an overestimate. Note that
a temperature lapse rate has been applied to modelled temperatures
to account for the difference in elevation between AWS and MAR
elevation.

and 0.65 events per year respectively. Similarly, all of the
model variants underestimate the observed event magnitude
by more than half a degree at most of the stations (though
notably not the two remaining in the ablation zone; in fact
event magnitude at Swiss Camp is overestimated). In terms
of the individual model variants, the MAR–Era simulation is
best able to reproduce event frequency (−0.09 events on av-
erage), the MAR–ERA and MAR–MIR simulations are both
best able to reproduce event duration (±0.04 days on aver-
age) and the MAR–Era simulation is best able to reproduce
event magnitude (−0.76 ◦C on average). MAR–Nor is the
poorest-performing model variant overall.

3.2 Mean temperature and mean summer temperature
at GC-Net stations in MAR

We assess the ability of the four MAR variants to repro-
duce temperature observed by the GC-Net more generally
by comparing the mean and trend of the entire daily mean
temperature time series at each station location (Table 4). We
present aggregate statistics for the entire time period in or-
der to account for the fact that the GCM-forced MAR vari-
ants are predicting climatic variability at the decadal scale.
The number of years of data (including gaps in the time se-
ries) is given for each station in Table 1. Results are pre-
sented by melt zone, where values are an average of all sta-
tions in that zone, weighted by the number of years of data
available for each station. Both MAR–Era and MAR–MIR

overestimate mean daily mean temperature (i.e. the average
of all of the daily means) by ∼ 1 ◦C, although this signal
is dominated by a large discrepancy in the dry snow zone,
where both model variants are too warm by ≥ 1.5 ◦C. Both
model variants, however, show good agreement with the ob-
servations in the ablation zone (−0.24 and −0.34 ◦C respec-
tively), which is where the most melting occurs. MAR–Can
and MAR–Nor both underestimate temperatures overall and
give better agreement with observations in general (−0.13
and −0.21 ◦C respectively), but they exhibit a poor perfor-
mance in the ablation zone (both variants > 1 ◦C too cold).
When considering only the summer (JJA) daily mean tem-
peratures, with the exception of MAR–Can in the percolation
zone, all MAR variants are too cold in all zones and overall.
MAR–Can performs best overall in summer, with a bias of
just −0.01 ◦C. All model variants reproduce observed trends
in both all and summer temperatures to within 0.1 ◦C yr−1

(most within 0.05 ◦C yr−1). We evaluate the ability of MAR–
Era to reproduce observed climate variability by comparing
modelled vs. observed mean annual and mean summer (JJA)
temperatures (Fig. 4). MAR–Era is well able to capture ob-
served inter-annual variability in both. Mean annual temper-
atures are particularly well correlated, with Pearson’s corre-
lation co-efficient (r) values in the range 0.77–1.00. Inter-
annual variability in mean summer temperatures is less well
captured (r = 0.62–94 if JAR2 is ignored). The low bias in
summer temperatures described above is also evident at the
inter-annual timescale in the MAR–Era simulation.

3.3 Extreme temperature events in Era-Interim data

We assess the degree to which the raw Era-Interim output
(i.e. not MAR forced with Era-Interim) captures extreme
temperature events at GC-Net stations (Fig. 5). In compar-
ison with the same data for MAR–Era, using the raw Era-
Interim output yields a poorer match to observations at all
sites except NASA-U and NGRIP. The average absolute bias
in magnitude of extreme temperature events is 0.87 ◦C in
MAR–Era and 1.81 ◦C in the raw Era-Interim data output.
In general, Era-Interim underestimates temperatures during
extreme events in a similar manner to MAR–Era. However
Era-Interim overestimates temperatures in the Swiss Camp
region and north-east of the ice sheet.

3.4 Melting during extreme temperature events

We use a positive degree-day sum (see methods) to approxi-
mate melt energy available during extreme and non-extreme
conditions at each of the 13 stations (Fig. 6). We note that
the difference in abundance of melt energy between adja-
cent melt zones is roughly an order of magnitude, with ob-
served total PDDs per station of 617, 96 and 5 ◦C in the
ablation, percolation and dry snow zones respectively. All
MAR variants are able to reproduce this gradient. We find
that the dependence of observed melt energy on statistically
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Table 4. Modelled–observed values for mean (◦C) and rate of change (◦C yr−1) of mean daily temperature during our study period. Values
given in bold (italic) denote an overestimate (underestimate) of temperature in general; i.e. the model is too warm (cold). The number of
years of data in total (i.e. the sum of the number of years of data at each station) is also identified (nyrs).

All nyrs= 233 Ablation nyrs= 40 Percolation nyrs= 91 Dry snow nyrs= 102

All data T dT
dt

T dT
dt

T dT
dt

T dT
dt

MAR–Can −0.13 0.03 −1.17 −0.05 −0.06 −0.01 0.22 0.11
MAR–MIR 1.19 0.02 −0.24 −0.08 1.11 −0.02 1.81 0.09
MAR–Nor −0.21 0.03 −1.41 −0.02 −0.46 −0.01 0.49 0.09
MAR–Era 0.86 −0.03 −0.34 0.03 0.66 −0.06 1.50 −0.02

JJA only

MAR–Can −0.01 0.01 −0.02 −0.05 0.27 −0.01 −0.26 0.04
MAR–MIR −0.64 −0.04 −0.56 −0.07 −0.62 −0.07 −0.68 0.00
MAR–Nor −1.58 0.04 −1.55 0.00 −1.57 0.06 −1.60 0.04
MAR–Era −0.35 0.01 −0.42 0.02 −0.03 0.01 −0.62 0.01
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Figure 4. Modelled vs. observed mean annual and mean summer temperature at each of the GC-Net stations. Modelled values are as simulated
by MAR–Era. Pearson’s correlation co-efficient and the root mean squared error (◦C) between the data are annotated. Red symbols and text
refer to summer (JJA) values; black symbols and text refer to annual values. Black dotted line denotes a 1 : 1 fit.

extreme temperatures also scales with elevation (r2
= 0.71;

n= 13); one-third and∼ 95 % of all melting occur during ex-
treme events in the ablation and dry snow zones respectively.
MAR–Era is able to reproduce this pattern (r2

= 0.71), but
the relationship is less clear in data from the GCM-forced
variants (r2

= 0.23–0.43).

We compare differences in the total PDDs observed and
predicted during the entire study period; all of the MAR vari-
ants are found to underestimate total PDDs (Table 5). During
extreme events, we see a two-fold increase in the model bias
for the MAR–Era, MAR–MIR and MAR–Can model vari-
ants; PDDs are underestimated by 26, 32 and 22 % during ex-
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Figure 5. Median frequency, duration and magnitude of extreme
temperature events as simulated by Era-Interim and MAR–Era. As
before, frequency is denoted by the height of each box, duration is
indicated by the width of each box and observed values are given
by the dashed black boxes. Box colours indicate the departure of
the modelled magnitude from the observed value, blue colours in-
dicate an underestimate and red colours indicate an overestimate.
Note that a temperature lapse rate has been applied to modelled
temperatures to account for differences in elevation between AWS
and Era-Interim elevation and AWS and MAR elevation.

treme events and 12, 18 and 10 % during non-extreme condi-
tions respectively. In the MAR-Nor simulation, PDDs are un-
derestimated to a greater degree during non-extreme temper-
ature conditions. The relative influence of model bias during
extreme events is spatially variable. In the ablation zone, the
total bias during extreme events is comparable to that during
non-extreme events except that the two biases are of the op-
posite sign; PDDs are overestimated in the ablation zone dur-
ing extreme events and underestimated in the ablation zone
during non-extreme events. Given the relative contribution of
melting during extreme events to overall melting here how-
ever (just 33 %), this results in an underestimate overall of 5,
12, 22 and 7 % for MAR–Era, MAR–MIR, MAR–Nor and
MAR–Can respectively. Conversely, in the percolation zone,
PDDs are underestimated during extreme events and overes-
timated during non-extreme conditions. However again the
signal observed during the dominant regime (i.e. 96 % of
PDDs occur during extremes) leads to a large underestimate
overall (52, 58, 84 and 40 % for the model variants as be-
fore). In the dry snow zone it is more difficult to partition the
relative influence of extreme vs. non-extreme events on to-
tal PDDs because there is far less melting here: a PDD total
of 5 ◦C per station over the entire study period. This is par-
ticularly of note for Summit and NGRIP stations which are
high up and far inland on the ice sheet; very small amounts
of melting are observed here, but no melting is modelled by
any of the model variants.

0

60

120

180 Crawford

0

40

80

120

160
DYE 2

0

4

8

12 Humboldt

0

200

400

600
JAR

0.000

0.001

0.002 NGRIP

0

1

2

NASA-E

0

10

20

30

40 NASA-SE

0

4

8

12

Obs Era MIR Nor Can

NASA-U

0

30

60

90
Saddle

0

20

40

60
South Dome

0

1

2

3 Summit

0

200

400

600 Swiss Camp

0

4

8

12 TUNU-N

0°10° W20° W40° W60° W80° W

80° N

75° N

70° N

65° N

60° N

Obs Era MIR Nor Can Obs Era MIR Nor Can

Obs Era MIR Nor Can

Obs Era MIR Nor Can

Obs Era MIR Nor Can

Obs Era MIR Nor Can

Obs Era MIR Nor CanObs Era MIR Nor CanObs Era MIR Nor Can

Obs Era MIR Nor Can

Obs Era MIR Nor Can

Obs Era MIR Nor Can

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
(C

)
o

PD
D

s
( C

)
o

PD
D

s
( C

)
o

Figure 6. Total positive degree days observed and modelled at each
location during the study period. Stacked bars represent total values.
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4 Discussion

4.1 Extreme temperature events in GC-Net
observations

Despite our relatively small sample, given the size of the ice
sheet, we see clear relationships between extreme event char-
acteristics and elevation, latitude and melt regime. It is not
surprising that extreme temperature events exhibit a stronger
magnitude at lower-lying locations, given the atmospheric
temperature lapse rate, but it is interesting that this relation-
ship is less strong for the five percolation zone stations than
for stations in the ablation and dry snow zones. We speculate
that this is a result of heat exchange at the snow surface mod-
erating near-surface temperatures in this region; sublimation
is a known energy sink in the percolation zone in the sum-
mer (Ettema et al., 2010). In south Greenland, extreme events
at lower elevations tend to be more frequent and of shorter
duration than those higher up on the ice sheet. Temperature
anomalies can be associated with cloudiness (reflecting up-
welling longwave radiation back down to the surface), and
lower-lying stations are more likely to experience short-term
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periods of orographic cloud cover. This is particularly likely
to affect west Greenland, which lies in the path of the pre-
vailing summer circulation pattern and consequently receives
moisture-laden onshore flow during the summer (Ohmura
and Reeh, 1991). In north Greenland however, we see that ex-
treme events become both longer-lasting and more frequent
as elevation increases. Longer extreme temperature events
are likely associated with high-pressure conditions which are
relatively persistent. In fact, extreme melt years on Green-
land have been attributed to an increase in the frequency
and duration of high-pressure conditions promoted by wider-
scale atmospheric pressure gradients such as the North At-
lantic Oscillation and the Greenland Blocking Index (e.g.
Nghiem et al., 2012; Hanna et al., 2013b; Lim et al., 2016;
Hanna et al., 2016). Extreme temperature events are respon-
sible for the vast majority of melt energy produced in the per-
colation and dry snow zones on the ice sheet but contribute a
much smaller proportion to overall melt energy in the abla-
tion zone. Because we only have data for two ablation zone
stations which are located in close proximity, further work is
required to assess whether this is a general property of the
ablation zone or restricted to this location; temperatures in
general are much warmer here, and extreme events are not
required to generate melting.

4.2 Extreme temperature events in MAR simulations

All of the four MAR model variants underestimate the fre-
quency of extreme events but simulate their duration well.
This suggests that MAR is able to reproduce the persis-
tence of conditions driving extreme temperature events when
they arise in the model. All MAR variants underestimate
the magnitude of extreme temperature events at most sta-
tions, in most cases by > 0.5 ◦C. This can be explained in
part by a general low bias in modelled summer temperatures,
although the magnitude of this bias is not sufficient to ac-
count for the magnitude of the data–model mismatch during
extreme periods. For example, MAR–Era exhibits a bias of
−0.35 ◦C during summer and −0.76 ◦C during extreme tem-
perature events. The raw Era-Interim output also exhibits a
low bias during extreme temperature events at most of the
GC-Net stations, with notable exceptions being north-east
Greenland and the most marginal stations at which temper-
ature during extremes are overestimated. This suggests that
the low bias we see in the MAR model during extreme pe-
riods could be an artefact of the forcing data. This is impor-
tant because Era-Interim and the GCMs examined here are
commonly used to force other regional- and local-scale mod-
els (e.g. RACMO2); their use is not restricted to MAR. The
version of MAR which is analysed here (v3.5) is known to
underestimate the atmospheric liquid water content and so
cloudiness (Fettweis et al., 2017) which may also contribute
to the cold bias in temperature extremes. However, we re-
peated the analysis with the most recent version of MAR
(v3.7) in which a correction for this has been incorporated,
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and this yielded no noticeable difference in the result. All of
the MAR model variants and Era-Interim overestimate event
magnitude at stations in the ablation zone, JAR and Swiss
Camp. We attribute this to difference in albedo between the
bare ice in the ablation zone and the snow-covered surface at
higher elevations. Energy exchange in bare-ice areas is gen-
erally more sensitive to sunny conditions; this likely explains
why the biases are opposite in this area compared to the per-
colation and dry snow zones where the albedo is high enough
to prevent this sensitivity.

Melt energy simulated by MAR is underestimated by 19,
25, 41 and 16 % when forcing is provided by Era-Interim,
MIROC5, NorESM1 and CanESM2 respectively. However
during extreme events, model biases in terms of melt energy
are double those calculated during non-extreme, positive-
temperature, conditions. This is important because approx-
imately half of all melt energy is generated during extreme
events. In general, the GCM-forced MAR simulations per-
form more poorly than the Era-Interim-forced simulation,
with the exception of MAR–Can (bias= 16 % vs. 19 % for
MAR–Era). We would expect the reanalysis-forced simula-
tion to perform the best, given its assimilation of observa-
tions; however we note that the difference is not large.

We observe melt energy generated at the two high-
est/furthest inland stations in our sample, Summit and
NGRIP, but none of the MAR variants simulate any melt-
ing at either of these stations during our study period. This is
because extreme temperatures are underestimated by ∼ 1 ◦C
by MAR at these stations (e.g. MAR–Era exhibits a bias of
−0.91 at Summit and −0.76 at NGRIP). It is important to
note that these are very small quantities and would not im-
pact ice-sheet-wide estimates of melting; however melting
is also important because of its role in ice sheet albedo: wet
snow is less reflective than dry snow. A significant melt event
can be defined as achieving > 1 mm w.e. day−1 (Franco et
al., 2013), and with the exception of Summit in 2012 this
was not achieved at either station during the study period.
Nonetheless, as the climate warms, melting at these locations
is likely to be more abundant, and properly capturing temper-
ature variability here will become even more important.

5 Conclusions

Analysis of GC-Net temperature data shows that the fre-
quency, magnitude and duration of extreme temperature
events on Greenland are strongly controlled by geography
(e.g. elevation, latitude), though further work is needed to
determine the relative contributions of potential physical
drivers of extreme events at different locations and over dif-
ferent time periods. The MAR regional climate model ac-
curately predicts the duration of extreme temperature events
on Greenland but underestimates their frequency by around
1 day per year and underestimates event magnitude by
> 0.5 ◦C. Whilst this is an improvement over coarse-scale

reanalysis data, it nonetheless leads to an underestimate in
melt energy, which we calculate to be 16–41 % during our
study period, dependant on model forcing chosen. MAR-
based predictions of future melting are calculated using an
energy balance method which has been shown to perform
well against observations in the past (Fettweis et al., 2017).
However since temperature plays a significant role in the en-
ergy balance equations (though melt does not linearly in-
crease with temperature), it is likely that these predictions
are affected by the exaggerated model bias we find during
extreme events in our study. Further work is needed to deter-
mine why the model underperforms in this area and whether
other similar models have the same limitation. We identify
this as a model development priority to ensure that MAR-
based estimates of ice sheet change are both comprehensive
and robust.
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