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Abstract. A new automated method enabling consistent
satellite assessment of seasonal lake ice phenology at 5 km
resolution was developed for all lake pixels (water cover-
age ≥ 90 %) in the Northern Hemisphere using 36.5 GHz
H-polarized brightness temperature (Tb) observations from
the Advanced Microwave Scanning Radiometer for EOS and
Advanced Microwave Scanning Radiometer 2 (AMSR-E/2)
sensors. The lake phenology metrics include seasonal timing
and duration of annual ice cover. A moving t test (MTT) al-
gorithm allows for automated lake ice retrievals with daily
temporal fidelity and 5 km resolution gridding. The result-
ing ice phenology record shows strong agreement with avail-
able ground-based observations from the Global Lake and
River Ice Phenology Database (95.4 % temporal agreement)
and favorable correlations (R) with alternative ice phenol-
ogy records from the Interactive Multisensor Snow and Ice
Mapping System (R = 0.84 for water clear of ice (WCI)
dates; R = 0.41 for complete freeze over (CFO) dates) and
Canadian Ice Service (R = 0.86 for WCI dates; R = 0.69
for CFO dates). Analysis of the resulting 12-year (2002–
2015) AMSR-E/2 ice record indicates increasingly shorter
ice cover duration for 43 out of 71 (60.6 %) Northern Hemi-
sphere lakes examined, with significant (p< 0.05) regional
trends toward earlier ice melting for only five lakes. Higher-
latitude lakes reveal more widespread and larger trends to-
ward shorter ice cover duration than lower-latitude lakes,
consistent with enhanced polar warming. This study doc-
uments a new satellite-based approach for rapid assess-
ment and regional monitoring of seasonal ice cover changes

over large lakes, with resulting accuracy suitable for global
change studies.

1 Introduction

Ice phenology describes the seasonal cycle of lake ice cover
and encompasses freeze-up and breakup periods and ice
cover duration (Duguay et al., 2015a). Freeze-up corresponds
to the time period between the beginning of ice formation and
the formation of a complete sheet of ice; breakup involves the
time period between the onset of spring melt and the com-
plete disappearance of ice from the lake surface (Kang et al.,
2012). These ice phenology variables are key metrics sen-
sitive to weather and climate conditions and influence lake–
atmosphere interactions and hydrological and ecological pro-
cesses in high-latitude and high-altitude regions (Duguay et
al., 2006, 2012, 2015a; Mishra et al., 2011). By insulating
lake water from the overlying atmosphere and minimizing
water and atmosphere heat and gas exchanges, lake ice has
a controlling influence on water-column oxygen concentra-
tion, water temperature, and the composition and abundance
of aquatic species (Livingstone, 1997; Bengtsson and Her-
schy, 2012; Kang et al., 2012; Wrona et al., 2016). In addi-
tion to the impacts on aquatic life, the formation and dis-
appearance of lake ice also has a significant influence on
the spread of man-made pollutants such as perfluorinated
chemicals (PFCs) (Veillette et al., 2012; Wrona et al., 2016).
The extent and duration of lake ice also affect human ac-
tivities, including hydroelectric power generation, navigation
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and winter transportation, and production and distribution of
food and water (Schröter et al., 2005; Weyhenmeyer et al.,
2011). Moreover, lake ice phenology is closely coupled with
atmospheric heat fluxes (Latifovic and Pouliot, 2007; Park et
al., 2016) and sensitive to the alteration of weather patterns
under projected global warming (Magnuson et al., 2000).

Accurate and consistent records of lake ice phenology es-
pecially in data-sparse regions, including much of the pan-
Arctic and Qinghai–Tibetan Plateau regions, provide valu-
able information for monitoring global change impacts on
high-latitude and high-altitude environments (Magnuson et
al., 2000). Previous studies have documented significantly
earlier ice breakup between the 1950s and 2000s for lakes
in Canada (Duguay et al., 2006; Latifovic and Pouliot, 2007;
Prowse et al., 2011) and decreasing ice cover duration of
Eurasia lakes during the last few decades (Vuglinsky and
Gronskaya, 2006; Karetnikov and Naumenko, 2008; Prowse
et al., 2011). Shorter ice cover seasons may promote greater
CH4 emissions from northern lakes (Greene et al., 2014),
which could reinforce further climate warming due to the
role of CH4 as a potent greenhouse gas. Despite a general
tendency for later freezing and earlier breakup in the North-
ern Hemisphere (Magnuson et al., 2000), various tendencies
including earlier ice formation and later ice breakup over spe-
cific lakes and time periods may exist. For example, observa-
tions from satellite altimetry and radiometry over 1992–2004
for Lake Baikal showed a tendency for colder winters, with
earlier ice formation, later ice breakup, and ice duration in-
crease (Kouraev et al., 2007a, b).

A historic lake ice phenology database has been assembled
from long-term ground-based observations across the north-
ern domain (Magnuson et al., 2000; Benson et al., 2012);
however, the number of monitoring sites is extremely sparse,
with variable observational recording periods and methods,
which limits capabilities for regional assessment and moni-
toring of environmental changes. Data acquired from space-
borne optical–thermal infrared (TIR) and microwave sen-
sors have also been applied for monitoring river and lake ice
phenology at regional and global scales (Chu and Linden-
schmidt, 2016). Optical–TIR remote sensing can provide ac-
curate estimation of land surface temperature (LST) and clas-
sification of land cover types at relatively fine spatial resolu-
tions (∼ 10s to 100s of meters), while LST (1 km resolution)
and snow cover (500 m resolution) products derived from
MODIS (Moderate Resolution Imaging Spectroradiometer)
have been used to infer lake ice conditions (Nonaka et al.,
2007; Hall et al., 2010; Kheyrollah Pour et al., 2012). Time
series of AVHRR (Advanced Very High Resolution Ra-
diometer) imagery have also been used to classify Canadian
lake ice phenology events with relatively high accuracy (Lat-
ifovic and Pouliot, 2007). However, regional monitoring of
lake ice dynamics from satellite optical–TIR sensors is con-
strained by signal degradation and data loss stemming from
seasonal reductions in solar illumination at higher latitudes
and persistent cloud cover, smoke, and other atmospheric

aerosol contamination (Maslanik and Barry, 1987; Jeffries et
al., 2005; Helfrich et al., 2007; Kang et al., 2012).

Satellite microwave remote sensing at lower frequencies
(∼< 89 GHz) is relatively insensitive to solar illumination
and atmosphere constraints, while current microwave ra-
diometers onboard polar orbiting satellites provide frequent
(∼ daily) observations spanning northern (≥ 45◦ N) land ar-
eas. The active and passive microwave retrievals are also
highly sensitive to the large contrast in surface dielectric
properties between open water and ice cover over large lakes.
Despite successful applications using active microwave re-
mote sensing in lake ice retrieval (Leconte and Klassen,
1991; Nolan et al., 2002; Howell et al., 2009; Geldset-
zer et al., 2010), capabilities for global lake ice monitoring
from satellite radar sensors have been constrained by lim-
ited global coverage and temporal frequency of observations.
Alternatively, spaceborne microwave radiometers have pro-
vided brightness temperature (Tb) observations since 1978
with relatively high temporal fidelity (∼ 1–2 days) especially
at higher (≥ 45◦ N) latitudes. Frequent microwave radiome-
ter data acquisition and complete time series of images are
valuable to ice phenology studies and also supportive to im-
proving numerical weather model predictions (Helfrich et
al., 2007) and timely monitoring of lake ice events, includ-
ing transient ice disturbances (Jeffries et al., 2005). Despite
having relatively coarser spatial resolution retrievals than
optical–TIR sensors, the capability for consistent daily lake
ice monitoring available from passive microwave observa-
tions provides added precision for delineating lake ice phe-
nology trends, which may be much smaller than year-to-year
ice cover variability. The satellite Tb retrievals are capable
of detecting lake ice phenology events coinciding with large
changes in surface emissivity, but the passive microwave re-
trievals are constrained by a generally coarser spatial resolu-
tion than radar and optical–TIR sensors. Despite these limita-
tions, ice freeze-up and breakup events for Great Slave Lake
(GSL) were monitored using a threshold-based method for
SSM/I (Special Sensor Microwave Imager) observations at
85 GHz (Walker and Davey, 1993; Ménard et al., 2002). Re-
cently, H-polarized AMSR-E (Advanced Microwave Scan-
ning Radiometer for EOS) Tb observations at 19 GHz were
analyzed to determine ice phenology for GSL and Great
Bear Lake (GBL), the two largest lakes in northern Canada
(Kang et al., 2012, 2014). Similar Tb records from SSM/I
and SMMR (Scanning Multichannel Microwave Radiome-
ter) were also used to monitor lake ice phenology for Nam
Co Lake (Ke et al., 2013) and Qinghai Lake (Che et al., 2009)
within the high-elevation Qinghai–Tibetan Plateau. Previous
studies based on satellite passive microwave remote sensing
have mainly focused on one or two lakes using empirical al-
gorithm thresholds developed for specific study areas. There
is a great need to develop a universal lake ice detection al-
gorithm and establish a consistent ice phenology database
covering major lakes at the global scale for climate impact
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assessments such as those published by the Intergovernmen-
tal Panel and Climate Change (Stocker et al., 2013).

In this study, we present a new automated method to de-
rive lake ice phenology using 36.5 GHz H-polarized satellite
radiometric Tb measurements from AMSR-E and AMSR2
(Advanced Microwave Scanning Radiometer 2). The algo-
rithm is used to produce daily lake ice maps with 5 km grid-
ding. The resulting AMSR-E/2 Lake Ice Phenology (LIP)
record encompasses all 5 km by 5 km lake pixels (water
coverage ≥ 90 %) within the Northern Hemisphere (≥ 0◦ N)
and spans more than 12 years of observations including
both AMSR-E (June 2002 to September 2011) and AMSR2
(June 2012 to December 2015) satellite sensor records. Here
we present a detailed methods description and evaluation of
the LIP product against other independent observations and
alternative lake ice products. A trend analysis is also con-
ducted to characterize recent regional LIP changes over the
study period.

2 Methods

2.1 Study domain and datasets

2.1.1 Study domain

This study utilizes satellite passive microwave remote sens-
ing to detect lake ice changes for 5 km lake pixels in the
Northern Hemisphere, with a particular focus on lake ice
phenology in the mid- and high latitudes (≥ 30◦ N). The
domain (Fig. 1) includes the high northern pan-Arctic re-
gion and high-altitude Qinghai–Tibetan Plateau, which are
data-sparse but strongly sensitive to the Arctic amplifica-
tion effect (Serreze and Francis, 2006; Woo et al., 2007)
and/or elevation-dependent warming (Wang et al., 2011;
Mountain Research Initiative EDW Working Group, 2015).
Both regions are also characterized by cold climate con-
ditions with extensive winter ice cover. The resulting do-
main includes three sets of lakes for algorithm evaluation
and lake ice phenology analysis. Among the lakes analyzed,
four are represented in the Global Lake and River Ice Phe-
nology Database (GLRIPD) (Benson and Magnuson, 2000)
and were used to evaluate the LIP estimates on a per pixel
basis against available ground-based observations; the four
GLRIPD lakes evaluated include Lake Superior in the USA
and Canada and Lake Oulujarvi, Lake Haukivesi, and Lake
Paijanne in Finland. In addition, 12 North American lakes
(GBL, GSL, Smallwood Lake, Nettiling Lake, Dubawnt
Lake, Amadjuak Lake, Wollaston Lake, Baker Lake, Kasba
Lake, Lesser Slave Lake, and Peter Pond Lake in Canada
and Red Lake in USA) that experience annual breakup and
freeze-up events were selected for lake-wide intercompar-
isons between the LIP metrics derived from this study and
alternative lake ice products from the Interactive Multisensor
Snow and Ice Mapping System (IMS) (Helfrich et al., 2007;

http://www.natice.noaa.gov/ims/) and the Canadian Ice Ser-
vice (CIS) (Howell et al., 2009).

Finally, regional LIP trends were assessed over the 12-year
(2002–2015) satellite record for 71 Northern Hemisphere
lakes identified in the Global Lakes and Wetlands Database
(GLWD) (Lehner and Döll, 2004). The lakes selected repre-
sent approximately 23 % (297 044 km2) of the estimated total
surface area of large lakes (area≥ 50 km2)within the domain
(Lehner and Döll, 2004). The 71 lakes were selected on the
basis of having (a) at least one 5 km lake pixel with 100 %
water coverage and located outside of a 5 km land buffer zone
and (b) all pixels representing the lake having at least 20 days
with full ice coverage and 20 days with open water. Cri-
terion (a) was used to reduce potential contamination from
adjacent land areas since the native resolutions of 36.5 GHz
observations are approximately 14 km× 8 km for AMSR-E
and 12 km× 7 km for AMSR2, respectively (Imaoka et al.,
2010). Criterion (b) emphasizes lakes having extended ice
and open water seasons rather than those with a temporary
ice cover or short open water phase. The 20-day minimum
duration was set according to the predefined subsample sizes
of our algorithm (Sect. 2.3).

2.1.2 Datasets used for algorithm development

The lake ice detection algorithm developed in this study re-
lies primarily on 36.5 GHz H-polarized Tb retrievals from
AMSR-E and AMSR2. The AMSR-E sensor was opera-
tional on the NASA Aqua satellite from June 2002 to Oc-
tober 2011 and provided twice-daily measurements of global
microwave emissions over land with descending/ascending
orbital equatorial crossings at 01:30/13:30 local time and
vertically (V) and horizontally (H) polarized Tb retrievals at
six frequencies (6.9, 10.7, 18.7, 23.8, 36.5, 89.0 GHz). For
this study, we used the AMSR-E ascending 36.5 GHz orbital
swath data at the native footprint resolution of approximately
14 km× 8 km (Kawanishi et al., 2003). After the cessation
of AMSR-E operations on 4 October 2011, its successor
AMSR2 was launched on 18 May 2012 onboard the sun-
synchronous JAXA GCOM-W1 satellite. AMSR2 is simi-
lar to AMSR-E in sensor configuration, including frequen-
cies, incidence angle, and orbital equatorial crossing time.
Major AMSR2 advancements over AMSR-E include an ad-
ditional frequency at 7.3 GHz designed for mitigating radio
frequency interference (RFI) and a larger (2.0 m diameter)
main reflector for enhanced spatial resolution. The AMSR2
L1R (version 1.2) resampled ascending swath 36.5 GHz Tb
retrievals at approximately 12 km× 7 km resolution were
used for this study. The uncalibrated AMSR2 Tb retrievals
were estimated to be positively biased against AMSR-E by
∼ 1.3 K (Du et al., 2014). However, the sensor inconsistency
is expected to have minimal impacts on our algorithm, which
relies on Tb time series change signal detection rather than
Tb absolute accuracy.
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Figure 1. Three sets of lakes selected for the LIP analysis in the Northern Hemisphere mid- and high latitudes (≥ 30◦ N). The purple star
symbols denote lakes used for evaluating LIP retrievals on a per pixel basis against GLRIPD ground-based observations, including Lake
Superior in the USA and Canada and Lake Oulujarvi, Lake Haukivesi, and Lake Paijanne in Finland. The red star symbols denote 12 lakes
(Great Bear Lake, Great Slave Lake, Smallwood Lake, Nettiling Lake, Dubawnt Lake, Amadjuak Lake, Wollaston Lake, Baker Lake, Kasba
Lake, Lesser Slave Lake, and Peter Pond Lake in Canada and Red Lake in USA) used for the lake-wide comparisons between the LIP results
from this study and other regional lake ice phenology records (IMS, CIS). The 71 lakes selected for assessing LIP trends over the 12-year
satellite record are in bright blue.

The Level 1 GLWD (Lehner and Döll, 2004) comprises
the 3067 largest lakes (area≥ 50 km2) and 654 largest reser-
voirs (storage capacity≥ 0.5 km3) worldwide and was used
for identifying Northern Hemisphere water bodies and the 71
large lakes used for the LIP assessment (Fig. 1). We also used
the MODIS 250 m land–water mask (MOD44W) for calcu-
lating the proportional water coverage of 5 km resolution pix-
els within lake areas identified by the GLWD (Carroll et al.,
2009).

2.1.3 Datasets used for algorithm evaluation

Four lake ice phenology databases were used to evaluate the
LIP retrievals, including (a) the GLRIPD (Benson and Mag-
nuson, 2000), (b) the National Oceanic and Atmospheric Ad-
ministration (NOAA) IMS 4 km daily snow and ice prod-
uct (Helfrich et al., 2007; http://www.natice.noaa.gov/ims/),
(c) the CIS lake-wide ice product (Howell et al., 2009),
and (d) MODIS quick-look images for GBL downloaded

from the Geographic Information Network of Alaska (http:
//www.gina.alaska.edu).

The GLRIPD contains descriptive ice cover data for
865 lakes and rivers in the Northern Hemisphere (Ben-
son and Magnuson, 2000). The GLRIPD includes ground-
based (lakeshore) observations that were used for evaluat-
ing the corresponding LIP results for the targeted lakes. The
GLRIPD records the first date when the water body was ob-
served to be completely ice covered and the date when the
last ice breakup was observed before the summer open water
phase for each year of record (Benson and Magnuson, 2000).
For evaluating LIP results representing 5 km lake dominant
pixels (water coverage ≥ 90 %), the lake was assumed com-
pletely covered with ice for the period between the first date
with complete ice cover and last ice breakup date as recorded
in the GLRIPD, while lakes were classified as open water
condition for other dates within each annual cycle. Only four
lakes were selected for the LIP comparisons due to a predom-
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inance of ice observations from smaller lakes in the GLRIPD
database. The temporal coverage of GLRIPD observations
for the four lakes that overlaps with the AMSR-E/2 record
extends from 2002 to 2007 for Lake Superior and 2003 to
2007 for Lake Oulujarvi, Lake Haukivesi, and Lake Paijanne.

The NOAA IMS daily snow and ice product provides snow
and ice cover extent information derived from ground ob-
servations and an extensive variety of satellite observations,
including AVHRR, GOES (Geostationary Operational En-
vironmental Satellite), SSM/I, and AMSU (Advanced Mi-
crowave Sounding Unit) (Helfrich et al., 2007). The CIS
lake ice product estimates lake ice cover fraction in tenths
(0: open water; 10: complete ice cover) for nearly 140 lakes
across Canada and the northern USA from visual interpreta-
tion of 1.1 km resolution NOAA AVHRR and 100 m resolu-
tion RADARSAT ScanSAR imagery (Howell et al., 2009),
and MODIS (250–500 m) and Visible/Infrared Imaging Ra-
diometer Suite (VIIRS) I-band (375 m) observations. The
CIS product provides a single lake-wide value per lake on a
weekly basis. Both the 4 km IMS grid products (year 2004–
2015) and CIS data (year 2002–2015) were used for lake-
wide comparisons against the resulting LIP retrievals.

MODIS quick-look images in true-color composites
(bands 1, 4, 3 in RGB) were selected for qualitative visual
comparisons with the LIP results. The MODIS images were
acquired over the breakup season (2012–2013) with clear-
sky conditions on 22, 27 June and 8 July 2013 and extensive
cloud cover on 5 July 2013. The quick-look products were
provided at 250 m resolution in Albers equal-area conic pro-
jection.

In addition, ERA-Interim (Dee et al., 2011) quarter-degree
reanalysis surface air temperature (SAT) data was analyzed
for evaluating LIP trends over the 71 Northern Hemisphere
lakes selected (Fig. 1). ERA-Interim is a global atmospheric
model data reanalysis produced by the European Centre for
Medium-Range Weather Forecasts, and the data assimilation
system used to produce ERA-Interim is based on a 2006 re-
lease of the IFS (Cy31r2) including a four-dimensional vari-
ational analysis (4D-Var) with a 12 h analysis window (Dee
et al., 2011). Daily average SAT over the spring (MAM) and
fall (SON) seasons of years 2002 to 2015 was extracted for
the quarter-degree grids encompassing the lake centers.

2.1.4 Data processing

To derive the LIP estimates, AMSR-E/2 36.5 GHz orbital
swath Tb data were spatially resampled to a 5 km resolution
polar EASE-Grid (version 2) format using an inverse dis-
tance squared weighting method (Ashcroft and Wentz, 2000;
Brodzik et al., 2012, 2014). It is worth noting that the Tb spa-
tial gridding is posted at 5 km resolution while the original
36.5 GHz AMSR-E/2 observations have coarser native sen-
sor footprints (∼ 12 km for AMSR-E and 9 km for AMSR2).
The finer grid spacing is intended to facilitate product com-
parisons and analyses with other alternative lake products de-

rived at similar resolutions, including the NOAA IMS 4 km
daily snow and ice product and a land surface fractional open
water cover dataset derived from AMSR-E/2 at 5 km res-
olution (Du et al., 2016). Before carrying out the Tb grid-
ding process, an additional altitude correction was made to
the AMSR-E data by considering the actual surface of the
Earth instead of that of an ideal Earth ellipsoid. The same al-
titude correction was used for the AMSR2 L1R data (Maeda
et al., 2016). According to Maeda et al. (2016), an altitude of
3000 m leads to about 4 km displacement of AMSR2 Tb ge-
olocation. Thus the altitude correction is a necessary prereq-
uisite to ensure reliable analysis of AMSR-E/2 lake ice phe-
nology retrievals at higher elevations, including the Qinghai–
Tibetan Plateau.

The finer-resolution MOD44W static open water maps
were aggregated to the same 5 km resolution polar EASE-
grid 2.0 projection format as LIP and used with the GLWD to
identify dominant lake pixels (water coverage≥ 90 %) where
the AMSR-E/2 lake ice detection was made. The 250 m res-
olution MODIS quick-look images were re-projected to the
EASE-grid 2.0 projection for visual comparisons with the
LIP results.

2.2 Algorithm theoretical basis

Accurate modeling of satellite observed microwave emis-
sions from lakes is complex and requires good understand-
ing of microwave scattering and emitting mechanisms from
atmosphere and lake elements. Microwave emissions from
a non-scattering atmosphere are governed by both air tem-
perature and atmosphere optical thickness, which is approxi-
mately the sum of the optical thickness of oxygen, cloud liq-
uid water, and atmospheric water vapor (Wang and Tedesco,
2007; Du et al., 2015). Microwave emissions from a lake
with an upper layer that may consist of water, ice, and snow
are determined by a number of factors; these factors include
lake surface roughness, water dielectric properties mainly
affected by water salinity and temperature, ice thickness
and dielectric properties, and snow cover dielectric proper-
ties mainly controlled by snow density and wetness, snow
particle size, and stratification of snow and ice layers (Du
et al., 2010; Lemmetyinen et al., 2010, 2011). Despite the
complexity of the lake emission problem, sharp changes in
satellite microwave Tb observations at multiple frequencies
are evident during the transitions between lake freeze-up
and breakup periods. For example, previous studies showed
low Tb measurements (< 150 K) from H-polarized 37 GHz
SMMR data over low-emissivity open water regions of the
Great Lakes and Gulf of Mexico, contrasting with much
higher Tb values (> 215 K) over western Lake Superior un-
der frozen conditions due to the high emissivity of lake ice
(Ferraro et al., 1986). Similarly, the H-polarized emissivity at
35 GHz and 50◦ incidence angle is approximately 0.356 for a
calm and unfrozen lake at 0–8 ◦C and is well below the emis-
sivity (> 0.610) of different types of snow and ice (Mätzler,
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1994). These studies suggest a very large Ka-band Tb differ-
ence (> 60 K) between a lake at 0◦ with no ice and 100 %
ice coverage. The timing of ice formation and disappearance
can therefore be determined by the large characteristic Tb
changes indicated from satellite passive microwave observa-
tions (Walker and Davey, 1993; Che et al., 2009; Kang et al.,
2012).

2.3 Algorithm development

For identifying freeze-up and breakup events, a moving t test
method (MTT) was introduced to detect abrupt temporal
changes in the H-polarized 36.5 GHz Tb observations from
AMSR-E and AMSR2. Selection of 36.5 GHz Tb observa-
tions from other available AMSR-E/2 frequencies represents
a compromise between finer spatial resolutions gained from
higher frequencies and less sensitivity to potential atmo-
sphere contamination available from lower Tb frequency ob-
servations. Moreover, H-polarization Tb retrievals were used
instead of V-polarization data due to their reported higher
sensitivity to lake freeze-up/breakup signals (Kang et al.,
2012). The detailed lake ice detection method used in this
study is described below.

2.3.1 Step 1: detection of abrupt changing point

The MTT method was initially developed for detecting
abrupt climate changes by examining whether the difference
between the mean values of two subsamples is statistically
significant (Jiang and You, 1996; Xiao and Li, 2007). As
detailed in the literature (Xiao and Li, 2007), for a time
series with n elements, a t test is made at each point xk
for evaluating the difference of the two subsets xk1 and xk2
(n1 ≤ k ≤ n−n2; n1, n2 are the subsample sizes) before and
after xk . The t statistic is defined as

t =
xk2− xk1

sk

√
1
n1
+

1
n2

, (1)

where sk =

√
n1s

2
k1+n2s

2
k2

n1+n2−2 , xk2 and xk1 are the mean values,

and s2
k1 and s2

k2 are the variances for the two subsets, respec-
tively. Given a significance level α, xk is determined as an
abrupt changing point if |t | ≥ tα . In this study, we define α as
0.005 and temporal subsample sizes as n1 = n2 = 20 days.
The 20-day requirement is set for excluding potentially dy-
namic Tb changes caused by short-term weather events such
as storms.

2.3.2 Step 2: determining reference Tb values for lake
ice conditions

For a group of detected changing points sequenced from p

to q, the mean Tb values xp1 and xq2 as defined in Eq. (1)
are representative of the satellite observations over the sta-
ble stages before and after the changing period, respectively.

For a lake experiencing a complete annual freeze-up/breakup
cycle, at least two groups of seasonal changing points can
be defined. Besides the sharp Tb increases as lake water
freezes, the melting of dry snow overlying lake ice to wet
snow can induce further increases in the observed Tb since
microwave emissions from wet snow are close to that of
a blackbody (Ulaby et al., 1986). Therefore, assuming xp1
is always smaller than xq2, we define the lowest xp1 of all
changing groups as the reference Tb for lake water and xq2
from the same group as the reference Tb for lake ice. Lake
ice conditions for a given date i can thus be determined as

Ice dominant if Tbi ≥ Tbthreshold

Water dominant if Tbi < Tbthreshold , (2)

where Tbi is the Tb for date i, Tbthreshold = (xp1+xq2)/2.0, and∣∣xp1− xq2
∣∣ is required to be larger than 30 K since liquid–

ice phase changes of lake water can lead to large Tb changes
exceeding 60 K as introduced in Sect. 2.2.

2.3.3 Step 3: deriving lake ice status

Based on Eq. (2), lake ice status is first derived for each
point i in the Tb time series where n1 ≤ i ≤ n− n2 using
a temporally smoothed Tbi defined as the mean Tb within
the range[i− n1/2, i+ n2/2]. The use of a smoothed Tbi
minimizes the impact of high temporal frequency events in
the time series while emphasizing lower frequency lake ice-
covered and ice-free signals. Thus for point j , whose tem-
porally adjacent points have different lake ice status, the re-
fined lake ice detection is carried out using Eq. (2) for each
observed Tb value within the range [j −n1/2,j +n2/2]. For
running the algorithm, missing daily Tb retrievals were ob-
tained through temporal linear interpolation of adjacent suc-
cessful Tb retrievals acquired from the same ascending orbits
(Kim et al., 2012). However, only the lake ice detection re-
sults corresponding to the actual satellite observations were
output for further analysis. The above lake ice detection pro-
cess was carried out for each Tb time series from AMSR-E
and AMSR2 separately because of the 7-month gap (4 Octo-
ber 2011–18 May 2012) in the observation records between
the two sensors.

The above MTT algorithm was applied to all 5 km pix-
els with dominant (≥ 90 %) open water coverage within the
Northern Hemisphere domain on a daily basis to generate
the AMSR-E/2 LIP dataset describing lake ice conditions.
The dominant (≥ 90 %) open water coverage criterion is set
to include lake pixels while reducing potential contamination
from adjacent land areas.

2.4 Evaluation of lake ice phenology retrievals

The resulting LIP retrievals were evaluated against other
available lake ice databases, including the GLRIPD, IMS,
and CIS products. The remotely sensed lake ice phenology
variable definitions from this study are summarized in Ta-
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Table 1. Definitions of remotely sensed lake ice phenology variables from this study in relation to the other lake ice observational datasets
used for the LIP validation assessment on a per pixel basis and for entire lakes.

Per pixel basis Entire lake

Terminology Definition Terminology Definition

Ice-on date Day of year on which a pixel be-
comes totally ice covered

Complete freeze over
(CFO) date

Day of year when all pixels become
totally ice covered

Ice-off date Day of year on which a pixel be-
comes totally ice free

Water clear of ice
(WCI) date

Day of year when all pixels become
totally ice free

Ice cover duration of
entire lake (ICDe)

number of days between CFO and
WCI

Associated dataset: LIP Associated datasets: LIP, IMS, CIS

ble 1 relative to the other lake ice observational data records
used for LIP validation on a per pixel basis and for entire
lakes (Kang et al., 2012; Duguay et al., 2015a).

For comparing with the GLRIPD ground-based records,
the LIP ice-on and ice-off dates were extracted for the
5 km pixel closest to the GLRIPD observation site. The
pixel representing Lake Superior has 100 % water coverage
(lat/long: 46.78◦ N/−90.45◦W). For the pixels representing
Lake Oulujarvi (lat/long: 64.3◦ N/27.3◦ E), Lake Haukivesi
(lat/long: 62.07◦ N/28.57◦ E), and Lake Paijanne (lat/long:
61.19◦ N/25.55◦ E), the water coverage is 100, 91.4, and
95.7 %, respectively.

The LIP-derived annual CFO (complete freeze over) and
WCI (water clear of ice) dates for the 12 selected lakes were
also compared with alternative IMS and CIS ice products.
Different from the dominant open water coverage (≥ 90 %)
requirement set for generating the LIP database, only lake
pixels with complete (100 %) open water coverage and out-
side of the 5 km land buffer zone were considered in the
IMS and LIP comparisons; this same criterion was set for
the lake-wide comparisons to minimize potential contami-
nation from adjacent land areas since the native 36.5 GHz
AMSR-E/2 footprint ranges from approximately 9 to 12 km.
Considering possible retrieval uncertainties, the CFO–WCI
dates derived from the LIP and IMS datasets were slightly
adjusted from the definitions in Table 1 and were determined
as the dates when most (99.5 % for this study) lake pixels
were identified as ice/water. The CIS CFO dates were deter-
mined when the reported lake ice fraction was 9, followed by
changes from 9 to 10, and WCI dates were derived when the
reported lake ice fraction was 1 followed by changes from 1
to 0. The derived CIS CFO–WCI dates are comparable with
corresponding LIP results, excluding waters adjacent to land
such as part of the eastern arm of the GSL where a high con-
centration of islands exists and ice formation/melting timing
was found to be different from other GSL areas (Howell et
al., 2009; Kang et al., 2012).

2.5 Analysis of lake ice phenology changes

Based on the LIP database covering the AMSR-E
(June 2002–October 2011) and AMSR2 (June 2012–
December 2015) observation periods, we selected 71 lakes
in the Northern Hemisphere from 250 of the world’s largest
lakes (including both natural and artificial lakes), as de-
scribed in the GLWD, to analyze potential lake ice phe-
nology trends, including WCI date, CFO date, and annual
ICDe. In order to assess the pattern of recent Northern Hemi-
sphere lake ice phenology changes, a temporal trend analy-
sis was performed on the 12-year LIP record for each of the
71 lakes. The assumption of independent observations was
first determined using a correlogram (Noguchi et al., 2011).
For ice phenology time series without significant autocorre-
lation detected, the magnitude and significance of temporal
trends were tested using the non-parametric Mann–Kendall
and Sen’s methods (Sen, 1968; Duguay et al., 2006). Alter-
natively, for a time series with persistent serial correlation,
additional prewhitening approaches were applied (Zhang et
al., 2000). For evaluating LIP-derived lake phenology, a sim-
ilar temporal trend analysis was also carried out on the ERA-
Interim daily average SAT over the lakes for the spring and
fall seasons from 2002 to 2015.

3 Results

3.1 LIP comparisons with GLRIPD lake observations

The lake ice status derived from the LIP and GLRIPD
records are plotted for the selected large lake validation sites
(Fig. 2), including Lake Superior (a), Lake Oulujarvi (b),
Lake Haukivesi (c), and Lake Paijanne (d), along with the
daily ascending AMSR-E/2 Tb retrievals. The LIP results
show generally strong agreement with the GLRIPD site ob-
servations of lake ice conditions for the four lakes exam-
ined, with overall retrieval accuracy of 95.4 %. The lake
ice/water retrieval error at the beginning of the record for
Lake Haukivesi (Fig. 2c) may be caused by partial melting
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Figure 2. Comparison of lake ice status for Lake Superior, USA and Canada (a), Lake Oulujarvi, Finland (b), Lake Haukivesi, Finland (c),
and Lake Paijanne, Finland (d), derived from the Global Lake and River Ice Phenology Database (GLRIPD) (blue dots) and AMSR Lake Ice
Phenology retrievals (LIP) (red dots). The AMSR-E/2 36.5 GHz H-polarized daily Tb retrievals used in the LIP algorithm are also plotted
for reference (black line). The blue/red dots represent GLRIPD/LIP-derived ice conditions as indicated by their y axis positions for the dates
described by their x axis coordinates.
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Table 2. Summary of the comparison results for water clear of ice (WCI) and complete freeze over (CFO) dates derived from AMSR Lake
Ice Phenology (LIP), Canadian Ice Service (CIS) datasets for the period 2002–2015, and the NOAA/IMS (IMS) dataset for the period 2004–
2015. RLIP,CIS/IMS denotes the correlation coefficient between the LIP and CIS/IMS datasets; DLIP,CIS/IMS is the average difference (unit:
day) in WCI or CFO dates calculated by LIP minus CIS/IMS.

Statistics of WCI date comparisons Statistics of CFO date comparisons

Lake name RLIP,CIS RLIP,IMS DLIP,CIS DLIP,IMS RLIP,CIS RLIP,IMS DLIP,CIS DLIP,IMS

Great Bear 0.90 0.94 −2 −3 0.90 0.54 0 3
Great Slave 0.85 0.91 −6 −5 0.72 0.63 −2 3
Smallwood 0.66 0.62 −6 −4 0.70 −0.08 −4 1
Nettiling 0.91 0.84 −9 −4 0.92 0.33 −2 10
Dubawnt 0.92 0.79 −8 1 0.34 0.78 −9 −5
Amadjuak 0.89 0.80 −7 −4 0.87 0.27 −2 6
Wollaston 0.95 0.87 −5 0 0.66 −0.42 −7 9
Baker 0.80 0.70 −10 −1 0.60 0.26 −7 0
Kasba 0.96 0.77 −5 3 0.19 0.61 −7 1
Lesser Slave 0.82 0.92 −12 −5 0.72 0.75 −11 −3
Red Lake 0.86 0.91 −4 2 0.77 0.72 −10 −9
Peter Pond 0.85 0.95 −7 −1 0.88 0.54 −5 0

Average 0.86 0.84 −7 −2 0.69 0.41 −6 1

of lake ice in January and February 2003 that resulted in low
AMSR-E/2 Tb observations. While the AMSR-E/2 Tb obser-
vations show dynamic daily fluctuations due to changing wa-
ter and atmosphere properties (Sect. 2.2), lake freeze-up and
breakup events constitute the dominant factors affecting sea-
sonal Tb changes. The effects of higher temporal frequency
Tb variations are minimized in the LIP algorithm by the pre-
defined 20-day subsample sizes (Sect. 2.3), which represent a
compromise between the algorithm’s capability in capturing
shorter-term lake ice formation or melt events, and poten-
tially degraded lake ice/water seasonal retrieval accuracy.

3.2 LIP comparisons against MODIS imagery, IMS
and CIS products

An example visual comparison between the LIP results and
MODIS quick-look imagery (Fig. 3) shows the 2013 spring
ice breakup process over the GBL. In this example, both
datasets show a general onset of lake ice breakup on 22 June
(Fig. 3a), similar spatial ice distribution patterns on 27 June
(Fig. 3b), and ice-free conditions on 8 July (Fig. 3d). Despite
extensive cloud presence in the MODIS image for 5 July,
both MODIS and LIP show remaining ice cover on the west-
ern edge of GBL (Fig. 3c). A few remaining pixels along the
GBL coast line were identified as ice covered in the LIP re-
sults for 8 July (Fig. 3d); the apparent LIP retrieval error is
attributed to land contamination, while the affected pixels are
within the 5 km land buffer zone (Sect. 2.4) and excluded in
the final LIP product.

The LIP products were compared against similar lake ice
phenology metrics from the IMS and CIS datasets for the
12 North American study lakes. For GBL and GSL, the LIP
products agreed well with the CIS records; temporal corre-

lations (R value) of 0.90 and 0.85 were observed for the
WCI dates for GBL (Fig. 4a) and GSL (Fig. 4b), respectively,
while correlations of 0.90 and 0.72 were determined for GBL
(Fig. 4c) and GSL (Fig. 4d) CFO dates. The LIP results were
also strongly correlated with the IMS record on derived WCI
dates for both lakes (R = 0.94 for GBL and R = 0.91 for
GSL) (Fig. 4a, b). However, lower correspondence was found
between LIP and IMS CFO dates, with respective correla-
tions of 0.54 and 0.63 for GBL and GSL (Fig. 4c, d). These
results indicate that the LIP-derived lake ice phenology vari-
ables are generally consistent with the IMS and CIS records
for the two lakes examined, with generally higher (lower)
correspondence for WCI (CFO) dates. For GBL, the LIP esti-
mated CFO dates occur similar to the CIS records (0-day dif-
ference) and later than the IMS records by about 3 days; the
LIP WCI dates occur earlier than the CIS and IMS records
by about 2 and 3 days, respectively. For GSL, the LIP record
also shows earlier (later) CFO than the CIS (IMS) records
by about 2 (3) days and earlier WCI dates than both CIS
and IMS by about 6 and 5 days, respectively. The intercom-
parisons between CIS and IMS show average 5- and 0-day
differences in respective CFO and WCI dates for their over-
lapping period from 2004 to 2015 for GBL; corresponding
differences for GSL are 5 and 1 day, respectively. The differ-
ences between the LIP and CIS/IMS metrics are of similar
magnitude as the differences between the CIS and IMS met-
rics.

The LIP comparison results for all 12 study lakes are sum-
marized in Table 2. Similar to the comparisons for GBL
and GSL, the LIP results are strongly correlated with both
CIS and IMS records for WCI dates, with respective average
temporal correlations (R value) of 0.86 and 0.84. For CFO
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Figure 3. Comparisons between MODIS quick-look images (left column) and AMSR-E/2 LIP results (right column) for Great Bear Lake
(GBL) on 22 June (a), 27 June (b), 5 July (c), and 8 July 2013 (d). The images are in the EASE-GRID version 2 polar projection format,
consistent with the underlying AMSR-E/2 gridded Tb dataset used for the LIP classification.
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Figure 4. Comparisons of water clear of ice (WCI) dates for
(a) Great Bear Lake and (b) Great Slave Lake and complete freeze
over (CFO) dates for (c) Great Bear Lake and (d) Great Slave Lake,
derived from the AMSR-E/2 Lake Ice Phenology (LIP) dataset de-
veloped in this study. The LIP results are compared against similar
metrics derived from the NOAA/IMS (IMS) and Canadian Ice Ser-
vice (CIS). Missing LIP data from 2011 to 2012 denote the period
between the end of AMSR-E operations and the start of the AMSR2
record.

dates, the average correlation between LIP and CIS results
are also strong (R = 0.69) while only moderate correlation
(R = 0.41) was found between the LIP and IMS results. The
LIP estimated CFO dates tend to occur earlier than the CIS
record by about 6 days and later than the IMS record by about
1 day. The LIP record also shows earlier WCI dates than the
CIS and IMS records by about 7 and 2 days, respectively.

3.3 Analysis of LIP lake ice phenology changes

The magnitude and direction of LIP trends were calculated
for the 71 Northern Hemisphere study lakes for the 12-year
AMSR-E/2 record. Among all 71 lakes, 43 (60.6 %) show de-
clining trends in ICDe, indicating an increasingly shorter ice
cover season, while the other lakes show either increasing or
minimal change in annual ice cover (Fig. 5). However, no ob-
served ice trends are statistically significant (p ≥ 0.05). The
lack of significant trends is attributed to large yearly vari-
ability (±13.3 day) in average ICDe and a relatively short
(12-year) LIP observation record. The changing trends also
demonstrate a latitudinal pattern, as 81.0% of the lakes (17
out of 21) at higher latitudes (> 60◦ N) show declining ICDe
trends while only 45.0 % (9 out of 20) of lower-latitude
(< 50◦ N) lakes show a similar trend.

The observed changes in ICDe are the net result of changes
in fall CFO and spring WCI dates. A tendency toward ear-
lier WCI dates was found for 40 lakes, including 5 lakes
(Lake Vygozero, Lake Barun-Torey, Lake Segozero, Novosi-
birsk Reservoir in Russia and Lake Teshekpuk in USA) with
significant LIP trends. However, no lakes showed signifi-
cant trends toward later spring breakup. Similar to the ICDe
analysis, most high-latitude lakes (81.0 % of lakes above
60◦ N) show earlier spring thaw trends, while only 45.0 %
of lower-latitude (< 50◦ N) lakes show similar trends. A ten-
dency toward delayed CFO was found for 35 of the 71 lakes
(49.3 %) examined, but no trends are statistically significant
(p ≥ 0.05). Lake Bosten in China was the only lake with a
significant trend toward earlier freeze-up. There was no clear
relationship between changes in lake CFO dates with lati-
tude.

Similar analysis of quarter-degree ERA-Interim SAT over
the study lakes indicates a much stronger warming trend in
spring (0.073 ◦C year−1) than fall (0.023 ◦C year−1). More-
over, similar to the latitudinal pattern shown in the LIP-based
analysis, the SAT increase in the spring is positively corre-
lated with latitude (R = 0.33; p = 0.005) indicating greater
warming during the study period at higher latitudes, while no
SAT correlation with latitude is found for the fall (R ∼ 0.0).

4 Discussion

We developed a new satellite approach for regionally con-
sistent classification of ice phenology for large lakes in the
Northern Hemisphere from the AMSR-E/2 sensor record.
We used similar 36.5 GHz H-polarization daily brightness
temperature retrievals from AMSR-E and AMSR2 sensor
records with 5 km posted spatial resolution. The resulting
LIP record documents the timing and duration of seasonal
lake phenology events of 5 km lake pixels (water coverage
≥ 90 %) over the 12-year AMSR-E/2 record. The LIP re-
sults showed strong agreement with GLRIPD site observa-
tions from four lakes, with agreement ranging from 92.4 to
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Figure 5. Changing trends of (a) ice cover duration (ICDe), (b) wa-
ter clear of ice (WCI) dates, and (c) complete freeze over (CFO)
dates of 71 lakes for the period 2002–2015. Lake changing trends
are shown by bar symbols whose heights are proportional to the
trend magnitudes; the significant trend lakes are marked by yellow
stars, while purple triangles denote lakes where no trend was de-
tected (rate of change is ∼ 0.0 day year−1).

98.7 %. Differences between the LIP and GLRIPD results
can be attributed to several factors. First, each database has
a different definition of lake ice conditions; lake ice cover-
age determined by satellite microwave sensors is dependent
on ice thickness, which may vary from the ice detection ap-
proach used by on-site observers or observed from optical
sensors. According to the literature (Hall et al., 1981), lake
ice thickness and Tb are linearly related for multiple frequen-
cies (from 5 to 37 GHz). The reported maximum microwave
penetration depths of fresh lake ice at 37 GHz range from
0.70 to 1.4 m, depending on ice temperatures (Chang et al.,
1997; Surdyk, 2002; Kang et al., 2014). This implies that
the formation of thin ice, resulting in relatively small Tb in-
creases, may not be detectable using the defined Tb thresh-
olds in the LIP algorithm. Differences between the LIP and
GLRIPD results may also reflect spatial inconsistencies in
lake observation area between the ground-based lakeshore
observations and the coarser satellite footprint. Thus, the lake
area observed on-site may not completely overlap with the
AMSR-E/2 lake pixel used for the LIP classification. The
GLRIPD also does not provide explicit descriptions of lake
ice status for the period between the first date when the water
body was completely ice covered and the date when the last
ice breakup occurred; thus, short-term events such as tem-
porary ice melting or formation may not be recorded in the
GLRIPD. For example, though identified as ice covered in
the GLRIPD, Lake Oulujarvi was more likely to have thawed
on 9 January 2007 since the low Tb (178.7 K) observation is
more characteristic of open water emissions (Fig. 2b). The
satellite Tb observations at 36.5 GHz are also affected by
other factors than surface freeze-up/breakup transitions, in-
cluding changes in atmosphere water vapor and cloud liquid
water (e.g., Sect. 2.2). For example, the LIP detected ice-
on conditions for Lake Haukivesi Finland in mid-summer
(30 July 2004) (Fig. 2c), which is likely incorrect and may
be due to increased atmosphere water vapor concentrations
under warm summer conditions, resulting in a large Tb in-
crease similar to a seasonal freeze-up event.

In the lake-based comparisons for the 12 lakes examined,
including GSL and GBL, the LIP results show strong cor-
respondence with the CIS product for both CFO and WCI
dates and similar high correlations with the IMS results for
WCI dates; however, the LIP WCI (CFO) dates differ by ap-
proximately 7 (6) days from the CIS and 2 (1) days from the
IMS. These differences are attributed to the different sensor
spatial/temporal resolutions and retrieval methods associated
with the different products. As described in Sect. 2.1.3, the
CIS product is derived for individual lakes from visual inter-
pretation of imagery from optical and SAR sensors and has
a ±1-week accuracy due to the weekly product reporting.
Both CIS and IMS products rely partially on observations
from optical sensors such as AVHRR and their accuracy is
influenced by adverse weather conditions, including the pres-
ence of cloud cover. IMS-derived lake ice products have been
widely used in monitoring global climate change (Duguay et
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al., 2013, 2014, 2015b); however, the IMS detected freeze
onset was found to be too early for some lakes in north-
ern Québec, presumably due to misclassification by inclu-
sion of coarse-resolution satellite passive microwave obser-
vations during periods of prolonged cloud cover (Brown and
Duguay, 2012; Brown et al., 2014); this may cause the low
correlations between LIP and IMS CFO dates, as well as a
delayed LIP CFO bias relative to IMS.

In addition, the relatively coarse spatial resolution of
AMSR-E/2 observations limits capabilities for resolving lake
ice conditions of finer-scale water bodies. Spaceborne and
airborne optical–TIR and radar sensors are capable of im-
proved delineation of smaller lakes and rivers (Chu et al.,
2016), but at the expense of degraded temporal fidelity for
regional and global applications.

As a proxy indicator of climate variability and change
(Duguay et al., 2006), lake ice phenology variables and
their changing trends are important for monitoring and un-
derstanding climate change and its feedbacks. As described
above, only 5 of the 71 lakes examined showed statistically
significant trends towards earlier WCI dates while no lake
showed a significant later CFO trend. Earlier ice breakup
events are signs of warmer spring conditions, which promote
melting and breakup of lake ice and a lower surface albedo
that absorbs more incoming solar radiation and further in-
tensifies the rate of ice melt (Mishra et al., 2011). These re-
sults are also consistent with previous studies over Canada
that found a general trend toward earlier springs and WCI
dates particularly over western Canada but little change in
isotherm and CFO dates in fall (Duguay et al., 2006). Our
results also indicate that lakes at higher latitudes are more
likely to experience trends toward earlier spring ice breakup
and shorter ICDe, which is consistent with enhanced warm-
ing trends at higher latitudes (Solomon et al., 2007; Deutsch
et al., 2008). The above ice phenology trends coincide with
regional SAT trends from ERA-Interim that show an average
spring warming rate that is more than triple that of fall, as
well as stronger warming trends for higher latitudes.

Though the LIP lake ice phenology trends are generally
consistent with regional climate warming (Magnuson et al.,
2000; Solomon et al., 2007), further analysis based on a
longer period of record is needed for distinguishing long-
term climate trends from large interannual variability and
periodic climate cycles, including the North Atlantic Oscilla-
tion (NAO), El-Niño Southern Oscillation (ENSO), and Pa-
cific Decadal Oscillation (PDO) (Mishra et al., 2011).

5 Conclusions

Lake ice phenology is strongly influenced by variations in air
temperature, while consistent long-term records of lake ice
changes provide a sensitive climate change indicator (Mag-
nuson et al., 2000; Weyhenmeyer et al., 2011). Continu-
ous and accurate monitoring of lake ice dynamics is greatly

needed for studies of global change and for monitoring lake
ice impacts on ecosystems and infrastructure, especially for
high-latitude and high-altitude regions. In this study, we de-
veloped a new automated algorithm for consistent daily re-
trieval of lake ice conditions over the Northern Hemisphere
using similar 36.5 GHz H-polarized Tb observations from
AMSR-E and AMSR2 sensor records. The resulting 5 km
resolution lake ice phenology record allows for daily mon-
itoring of lake ice conditions without being significantly de-
graded by variations in solar illumination or cloud and atmo-
sphere contamination effects. In particular, the LIP record
distinguished 71 large lakes that satisfied 20-day minimum
ICDe and open water season algorithm thresholds; these
lakes represent approximately 23 % of the total surface area
of large lakes (area≥ 50 km2) within the Northern Hemi-
sphere domain. Smaller water bodies were excluded from the
lake-wide analysis if the lakes had no pixels with complete
(100 %) open water coverage outside of a 5 km land buffer
zone. The relatively coarse spatial resolution of AMSR-E/2
observations limits capabilities for resolving finer-scale wa-
ter bodies, while the conservative lake selection criterion
minimizes potential land contamination effects. The LIP-
derived lake ice conditions were found to be largely consis-
tent with GLRIPD ground-based observations, with an aver-
age agreement of 95.4 % for the four lakes examined. The
LIP record also showed favorable correspondence with other
lake CFO and WCI assessments defined from the CIS and
IMS products for 12 large study lakes. The LIP, CIS, and
IMS differences were attributed to the different data sources
and methods used to construct the different products, includ-
ing differences in spatial and temporal resolutions of obser-
vations, and distinct nature of optical and microwave remote
sensing. Though the design of the LIP algorithm, including
the MTT method, helps to identify lake breakup/freeze-up
events, while minimizing other Tb disturbances from short-
term weather events, atmosphere effects can still lead to re-
trieval errors, especially from persistent high atmosphere wa-
ter vapor concentrations over high-latitude lakes in the sum-
mer. Based on the LIP record from 2002 to 2015, significant
earlier melting of lake ice cover was detected for 5 of the 71
lakes examined in the Northern Hemisphere, while lakes at
higher latitudes show a more evident warming trend toward
earlier ice breakup and shorter ICDe than those at lower lat-
itudes. As the operations from AMSR2 and similar sensors
continue, the MTT algorithm will allow for automated re-
trieval and consistent monitoring of ice conditions for large
Northern Hemisphere lakes into the future.

6 Data availability

The AMSR-E/2 derived Northern Hemisphere LIP record de-
scribed in this study is publicly available through the fol-
lowing link http://files.ntsg.umt.edu/data/AMSRE2_LAKE_
ICE_PHEN (Du et al., 2017).
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Appendix A: List of Abbreviations and Acronyms

AMSR2 Advanced Microwave Scanning Radiometer 2
AMSR-E Advanced Microwave Scanning Radiometer for EOS
AMSR-E/2 Advanced Microwave Scanning Radiometer for EOS and Advanced Microwave Scanning Radiometer 2
AMSU Advanced Microwave Sounding Unit
AVHRR Advanced Very High Resolution Radiometer
CFO complete freeze over
CIS Canadian Ice Service
ERA-Interim a global atmospheric model data reanalysis produced by the European Centre for Medium-Range

Weather Forecasts
GBL Great Bear Lake
GLRIPD Global Lake and River Ice Phenology Database
GLWD Global Lakes and Wetlands Database
GOES Geostationary Operational Environmental Satellite
GSL Great Slave Lake
IMS Interactive Multisensor Snow and Ice Mapping System
LST land surface temperature
MODIS Moderate Resolution Imaging Spectroradiometer
MOD44W MODIS 250 m land–water mask
MTT moving t test method
PFCs perfluorinated chemicals
R correlation coefficient
RFI radio frequency interference
SAT surface air temperature
SMMR Scanning Multichannel Microwave Radiometer
SSM/I Special Sensor Microwave Imager
Tb brightness temperature
TIR thermal infrared
VIIRS Visible/Infrared Imaging Radiometer Suite
WCI water clear of ice
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