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Abstract. Many mountainous regions depend on seasonal
snowfall for their water resources. Current methods of pre-
dicting the availability of water resources rely on long-term
relationships between stream discharge and snowpack mon-
itoring at isolated locations, which are less reliable during
abnormal snow years. Ground-penetrating radar (GPR) has
been shown to be an effective tool for measuring snow water
equivalent (SWE) because of the close relationship between
snow density and radar velocity. However, the standard meth-
ods of measuring radar velocity can be time-consuming.
Here we apply a migration focusing method originally de-
veloped for extracting velocity information from diffracted
energy observed in zero-offset seismic sections to the prob-
lem of estimating radar velocities in seasonal snow from
common-offset GPR data. Diffractions are isolated by plane-
wave-destruction (PWD) filtering and the optimal migration
velocity is chosen based on the varimax norm of the migrated
image. We then use the radar velocity to estimate snow den-
sity, depth, and SWE. The GPR-derived SWE estimates are
within 6 % of manual SWE measurements when the GPR an-
tenna is coupled to the snow surface and 3–21 % of the man-
ual measurements when the antenna is mounted on the front
of a snowmobile ∼ 0.5 m above the snow surface.

1 Introduction

Many regions of the world are critically dependent on sea-
sonal snowfall for their water resources; accurate estimates
of how much water is stored in mountain landscapes are
necessary to manage this resource. In the United States, a

large network of SNOTEL sites provides continuous infor-
mation about snow depth, density, and snow water equiva-
lent (SWE) that is used to make water availability predictions
(Serreze et al., 1999). While these sites provide valuable in-
formation at a site, scaling these point measurements up for
basin- or grid-scale estimates can be challenging (Molotch
and Bales, 2005). Currently, these data are used to develop
empirical relationships between SWE and nearby stream dis-
charge. These predictions are most accurate during average
years and may not be reliable during abnormal years (Bales
et al., 2006); thus, there is a need to develop new and reliable
methods for estimating SWE on a basin scale.

Several previous studies have demonstrated that ground-
penetrating radar (GPR) can be used to measure SWE (e.g.,
Bradford et al., 2009; Tiuri et al., 1984; Holbrook et al.,
2016). Tiuri et al. (1984) showed that at microwave frequen-
cies the real part of the dielectric constant for dry snow,
which governs the velocity, is almost completely determined
by the bulk density of snow. However, when liquid water is
present, both the real and imaginary parts are needed to deter-
mine the volumetric water content of the snow. The complex
dielectric constant can be measured by analyzing both the ve-
locity and attenuation characteristics of the snow (Bradford
et al., 2009). In the simplest case of dry snow, bulk density
can be estimated directly from radar velocity. Snow depth
can be measured from the two-way travel time of the radar
pulse between the snow surface and the ground surface and
the velocity. SWE can then be calculated as the product of
snow density and snow height.

Velocity measurements can be made from the surface
in several ways. Common-midpoint gathers (CMPs), where
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the distance between transmitting and receiving antennas is
steadily increased about a central location, provide highly
accurate measurements; the two-way travel time to subsur-
face reflectors is a function of offset and velocity. Collect-
ing CMPs requires separable antennas, and it can be time-
consuming to both collect and process these data. Common-
offset antennas, where both the transmitting and receiving
antennas are housed in the same unit at a fixed offset, al-
low large amounts of data to be collected with minimal ef-
fort. Measuring the velocity from common-offset data can
be achieved through calibration from measured snow depths,
modeling diffraction hyperbola travel times, or migration fo-
cusing analysis.

In this paper, we apply the migration velocity analysis
(MVA) presented by Fomel et al. (2007) to the problem of
estimating radar velocities, and thus snow density and SWE,
from 500 MHz common-offset GPR images. After testing
the method on a synthetic data set, we estimate SWE from
six field data sets. The first two data sets were collected by
pulling the GPR along the snow surface, and the remaining
four were collected with the GPR antenna mounted on the
front of a snowmobile. To validate the method, we compare
snow depth, density, and SWE estimates to measurements
made in pits and probed depth observations along the pro-
files. Since our primary goal is to develop a method for quick
velocity estimations, we assume that the snow we are mea-
suring is dry. The GPR-derived estimates agree with manual
SWE measurements within the estimated uncertainties.

2 Methods

GPR surveys utilize high-frequency, broadband electromag-
netic signals. The signal is generated at the transmitting an-
tenna and propagates in three dimensions at the velocity
given by v = c/

√
κ ′, where c is the speed of light in a vac-

uum and κ ′ is the real part of the dielectric constant. Sig-
nal attenuation is frequency dependent and can be approxi-

mated as α ≈
√
µ0
κ ′
κ ′′

2 ω, where µ0 is the magnetic permeabil-
ity of free space and κ ′′ is the imaginary component of the
dielectric constant (Bradford, 2007). While both κ ′ and κ ′′

are frequency dependent, within the typical frequency range
utilized for GPR studies, only κ ′′ exhibits strong variations
with frequency; in dry snow κ ′′ ≈ 0 (Bradford et al., 2009).

When a GPR signal encounters a boundary between sub-
surface materials with contrasting dielectric constants, some
of the energy is reflected back and recorded by a receiving
antenna. In this paper, we are specifically interested in tar-
gets that have lateral dimensions that are less than the width

of the Fresnel zone (the Fresnel radius is given by Rf =

√
zλ
2 ,

where z is depth and λ is the dominant wavelength). These
objects scatter energy in all directions and appear on the raw
GPR image as hyperbolic events, called diffractions (Landa
and Keydar, 1998), whose shape depends on the depth of the

object and the velocity of the overlying media (i.e., Claer-
bout, 1985). The velocity information contained in diffrac-
tions can be extracted by fitting hyperbolic curves to the data
or by migrating the image until the hyperbola is collapsed
to a point or “focus”. The latter process is called migration
velocity analysis. In this paper, we follow an approach de-
scribed by Fomel et al. (2007) and develop a semiautomated
MVA program in Matlab for the purpose of measuring radar
velocities in seasonal snow. The processing flow consists of
three steps: (1) separate diffractions from reflections through
plane-wave destruction, (2) migrate the filtered images at a
range of potential velocities, and (3) use the varimax norm as
a measure of diffraction focusing to pick velocities.

2.1 Data acquisition

2.1.1 GPR data

During February and March 2015, we collected GPR, snow
density, and snow depth data in the Medicine Bow Moun-
tains, SE Wyoming. The GPR data were acquired with a
Malå pulse radar system with center frequencies of 500 MHz.
The data were collected in two ways. In one configuration
(lines 1 and 2), we mounted the GPR antenna in a plastic
sled and pulled it behind a skier. The unit was set to fire con-
tinuously at a rate of 20 traces s−1 and the sample interval
on each trace was 0.3223 ns. In the other configuration (lines
3, 4, 5, and 6) the antennas were mounted on an aluminum
frame attached to the front of a Polaris RMK 600 snowmo-
bile. The unit was set to fire at a rate of 100 traces s−1 and
the sample interval was 0.3181 ns. Mounting the GPR an-
tenna in front of the snowmobile allows us to measure undis-
turbed snow as well as provide a snow surface reflection,
which can be used to analyze the attenuation properties of
the snow (Bradford et al., 2009). In both cases, we kept track
of our position with a Trimble R8 GPS unit that recorded our
location at 1 s intervals.

2.1.2 Snow depth and density data

To validate our snow density and velocity estimates from the
GPR data, we manually measured snow depth and densities
(Table 1). On lines 1, 2, 3, and 4 we dug snow pits and located
them with a handheld Trimble GPS unit. To measure snow
densities, we used a 0.001 m3, wedge-shaped snow sampler
and a scale that is accurate within 5–10 g. We made snow
density measurements at 10 cm intervals in the sidewall of
the snow pits starting from the snow surface and continu-
ing to the ground. Pit locations were chosen based on the
presence of diffractions near the snow–ground interface after
viewing the GPR images in the field. On lines 4, 5, and 6 we
measured snow depth at regular intervals with a probe.

Probed depth measurements are subject to uncertainties
due to uneven ground and deviations in probe angle. We es-
timate our depth measurements to be accurate within ±5 cm.
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Table 1. Snow pit summary.

Pit name Date Depth (m) ρ (kg m−3) SWE (m) GPR profiles

Pit 1 25 Feb 15 1.33± 0.05 305± 44 0.40± 0.14 Line 1
Pit 2 25 Feb 15 1.56± 0.05 314± 44 0.49± 0.14 Lines 2 and 3
Pit 3 11 Mar 15 1.44± 0.05 379± 50 0.55± 0.13 Line 4
Pit 4 11 Mar 15 1.80± 0.05 360 ± 48 0.65± 0.13 Line 4

Snow density observations are subject to over and under
sampling and we assign an uncertainty of ±5 g cm−3. We
calculate the average density for each pit profile assigning
each snow density observation to a 10 (± 1) cm column of
snow and performing a weighted sum. Propagating the un-
certainties through the averaging process yields uncertainty
estimates of 10–14 % of the averaged value, consistent with
uncertainty estimates for snow pit density measurements re-
ported by Conger and McClung (2009).

2.2 Preprocessing the GPR data

Prior to MVA we use MATGPR R3 (Tzanis, 2010) to ap-
ply several basic processing steps to the GPR data including
(1) resetting the trace to time zero, (2) trimming the time
window, (3) interpolating the traces to equal spacing using
the GPS data, (4) bandpass filtering the data from 100 to
1000 MHz, (5) using a median filter to remove antenna ring-
ing, and (6) scaling the amplitudes by t2.

2.3 Plane-wave destruction

Plane-wave destruction (PWD) is a predictive filtering
method designed to suppress events in a seismic or GPR
record having a particular dip (Claerbout, 1992; Fomel,
2002). The GPR image is modeled as the local superposi-
tion of plane waves described by the following differential
equation (Fomel, 2002):

dP
dX
− σ

dP
dt
= 0, (1)

where P(xt) is the wave field and σ(xt) is the local dip.
Equation (1) provides the means for predicting a trace in
the GPR image from its neighbor as a function of local dip.
Fomel’s (2002) three-point filter is derived from this equa-
tion:

C(σ )=

(1+ σ)(2+ σ)
12

−
(1− σ)(2− σ)

12
(2+ σ)(2− σ)

6
−

(2+ σ)(2− σ)
6

(1− σ)(2− σ)
12

−
(1+ σ)(2+ σ)

12
,

(2)

where σ is the local dip and the filtering is accomplished by
convolving Eq. (2) with the GPR image.

Our goal is to suppress continuous reflections that have
small dips (such as snow layering and the ground surface)

compared to the steeply dipping diffraction limbs. To esti-
mate local dips, we make an initial guess σ0 for the dip and
solve the set of equations

(
C′ (σ0)d

εD

)
1σ =

(
−C(σ0)d

0

)
(3)

for1σ . Here, C(σ ) denotes the convolution of the filter with
the data (d), C′(σ ) is the derivative of the filter with respect
to σ (C′(σ )d is a diagonal matrix), D is the gradient operator,
and ε is a weighting parameter that controls the smoothness
of the estimated dip field. Imposing smoothness constraints
on the dip field estimate ensures stability in the solution and
helps target the reflections in the image, since they generally
show higher amplitudes and are more laterally continuous
than the diffractions we seek to preserve. The estimated dip
field is then used to filter the data.

2.4 Migration

Migration is the process that moves reflected and diffracted
energy in a seismic or GPR record to its true location in the
subsurface (i.e., Claerbout, 1985). The quality of the migra-
tion process depends on the accuracy of the velocity esti-
mate. When the correct migration velocity is chosen, diffrac-
tion hyperbolas will collapse to a compact focus. With too
low a velocity, the hyperbola will only be partially collapsed,
while a velocity that is too high will cause the hyperbola to
be mapped into a “smile”.

For the MVA analysis, we migrate the entire image
through a suite of velocities (0.19–0.29 m ns−1 in increments
of 0.002 m ns−1) using MATGPR’s implementation of the
Stolt algorithm (Stolt, 1955). The Stolt algorithm performs
the migration in the frequency wave-number domain and is
computationally efficient. To reduce computational time, we
modified the code to perform all the migrations in one func-
tion call so that the forward Fourier transform is only per-
formed once.

2.5 Velocity picking

After PWD filtering and migrating the data through the suite
of velocities, the next task is to use a focusing indicator to
pick the image that is optimally focused. Following Fomel et
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Figure 1. (a) Synthetic hyperbolas for four rectangular diffractors with lateral dimensions of 0.1, 0.2, 0.3, and 0.4 m (from left to right) and
a round diffractor with radius= 0.4 m (far right; TT2W is the two-way travel time). (b) V curve for windows depicted in (a); V curve colors
match the windows in (a). V curves for all four rectangular diffractors show peaks at 0.24 m ns−1, while the round diffractor is peaked at
0.268 m ns−1. (c) Varimax curve for the entire image showing a peak at the correct migration velocity of v = 0.24 m ns−1.

al. (2007), we use the varimax norm (V ):

V =

N
N∑
i=1
s4
i(

N∑
i=1
s2
i

)2 , (4)

where si is the amplitude of the ith sample andN is the num-
ber of samples included in the calculation. V is a measure of
the “simplicity” of a signal (Wiggins, 1978). Since the sim-
plest possible signal is a spike and the optimal migration ve-
locity will map hyperbolas to the most compact focus, the
maximum V value will correspond to the image migrated
with the optimal velocity.

To assess the possibility for errors in the migration velocity
analysis, we applied our workflow to a synthetic data set gen-
erated from diffractors of varying size. We created five syn-
thetic diffractions with a migration velocity of 0.24 m ns−1.
The first four (Fig. 1a) correspond to rectangular objects
at 1 m depth with horizontal dimensions of 0.1, 0.2, 0.3,
and 0.4 m and thickness of 0.03 m. The fifth corresponds
to a circular object with a radius of 0.4 m (close to Rf for
the 500 MHz ricker wavelet used to generate the diffrac-
tions). The corresponding V curves for the windows shown
in Fig. 1a are plotted in Fig. 1b. The V curves are peaked at
0.24 m ns−1 for all of the rectangular diffractors, with flatter
(less well-resolved) peaks as the horizontal dimension of the
diffracting object increases, suggesting a larger uncertainty
in the velocity estimate. The peak V value for the circular
diffractor is at 0.268 m ns−1, indicating that curved objects
with lateral dimensions close to the size of the Fresnel zone
may continue to focus at velocities higher than their true ve-

locity. Finally, Fig. 1c shows the V curve for the entire im-
age, which peaked at the correct velocity of 0.24 m ns−1. This
analysis suggests that the peak V value will correspond to the
correct velocity if the majority of the diffractions correspond
to objects with a radius less than Rf.

We choose to compute V in sliding windows that span
the entire time section and have a user-defined width. Com-
puting V in this way allows us to incorporate many diffrac-
tion events and maximize the likelihood that the bulk of the
diffractions satisfy the point diffractor assumption. More-
over, sliding windows offer the potential to capture lateral
variability in snow density. After computing V for the entire
data set, we choose the maximum V value in each window to
get an estimate of the migration velocity. Noise in the filtered
image, large diffracting objects, or a lack of diffractions may
cause the peak of the V curve to correspond to an incorrect
velocity. To reduce the influence of erroneous velocity picks,
we smooth the picks in the lateral direction with a boxcar
averaging filter the same width as the sliding window.

We use the shape of the upper portion of the V curve to
estimate uncertainties in the velocity pick. Comparing the V
curves for synthetic diffractions as well as those from our
data, we find that V values that are greater than 95 % of the
peak value correspond to migrated images that are indistin-
guishable to the human eye (Fig. 2). We therefore obtain up-
per and lower bounds on our velocity estimate by finding the
minimum and maximum velocities with V values equal to
95 % of the maximum. We use the upper and lower bounds
on our velocity estimates to compute upper and lower bounds
on all subsequent calculations.
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Figure 2. Justification for uncertainty estimates. A synthetic hyperbola that is obviously under-migrated (a), migrated at indistinguishable
velocities (b–d), and obviously over-migrated (e). (f) The corresponding varimax curve for (a)–(e) showing a peak at the true migration
velocity (0.24 m ns−1), the shaded area under the curve corresponds to velocities in (b)–(d) and represents varimax values that are 95 % of
the maximum. Panels (g)–(l) show the same for a section of field data extracted from Line 1.

2.6 Dix equation

The migration velocity is the RMS velocity of all of the ma-
terial between the GPR antenna and the diffractor. When the
GPR antenna is in contact with the snow and the diffractor is
located at the base of the snow, we interpret the migration ve-
locity to be the average velocity of the snow across the width
of the diffraction hyperbola. When the GPR unit is mounted
on the front of the snowmobile, the signal must pass through
the air between the antenna and the snow surface so that the
migration velocity is higher than that of the snow. To find the
snow velocity from these data, we use the Dix equation (Dix,
1955):

Vsnow =

√
V 2

migtsoil−V
2
airtsnow

tsoil− tsnow
, (5)

where velocity subscripts refer to the migration velocity, the
velocity in air, and the velocity within the snowpack and time
subscripts refer to the two-way travel times of the snow sur-
face and soil surface reflections.

The Dix equation contains two important assumptions.
First, the velocity of the snow must be approximately con-
stant over the width of the hyperbola and, second, the half-
width of the hyperbola should be small compared to the depth
of the diffractor (x� z). The diffractions in our data sets are
approximately 4 to 5 m wide; thus, we assume that any lateral
variations in snow density occur on a larger scale than this.
If the second assumption is not valid, then the Dix velocity
will be higher than the true velocity, resulting in a density
estimate that is too low. The snow depths in our data range
from ∼ 1–2 m, which is comparable to the half-width of the
hyperbolas.

To determine the minimum snow depth that satisfies the
x� z assumption, we traced rays from point diffractors
at depths ranging from 0 to 5 m through a 0.23 m ns−1

snowpack, representing a snow density of 0.358 g cm−3 (see
Sect. 2.7), with a 0.5 m thick air layer between the snow
surface and the receiver positions (Fig. 3). For each result-
ing travel-time curve, we obtained nine different estimates
of the migration velocity by performing a least-squares fit to
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Figure 3. Ray paths and travel times for point diffractors. (a) A
value of 0.5 m of air overlying a 230 m ns−1 snowpack with point
diffractors buried at 0.5 m intervals. (b) Two-way travel times for
each of the diffractors showing the characteristic hyperbolic shape.

the travel-time data and successively reducing the widths of
the hyperbolas from 10 to 2 m in 1 m increments. Using the
Dix equation, we obtained estimates of the snow velocity as
a function of diffractor depth and hyperbola width (Fig. 4).
The velocity estimates made with the Dix equation approach
the true velocity as the diffractor depth increases and the hy-
perbola width decreases. For hyperbolas that are 4–5 m wide
(the average width that we observe in our data), the Dix ve-
locity is within 2 % of the true velocity when the diffractors
are about 1.5 m deep, 5 % when the diffractors are about 1 m
deep, and 10 % or greater when the diffractors are 0.5 m deep.
We conclude that the use of the Dix equation is justified for
diffractors buried deeper than 1.5 m beneath the snow sur-
face.

Although the results of this analysis are only valid for
travel-time modeling, the x� z assumption may be less se-
vere for migration focusing analysis. Diffraction amplitudes
decrease with increasing horizontal distance from the diffrac-
tor location; thus, the traces closest to the diffractor have the
greatest contribution to the final image, suggesting that the
Dix equation may give adequate results for diffractors that
are less than 1.5 m deep when velocities are estimated from
MVA (we test this with our synthetic data set in Sect. 3.1).

To propagate our velocity uncertainty estimates through
the Dix equation, we assign an uncertainty of 0.2 ns to our
travel-time observations and use Eq. (5) along with our ve-

locity uncertainty estimates to compute upper and lower
bounds on the snow velocity.

2.7 Estimating SWE

To estimate SWE from the radar data, we need to know the
depth of the snow and the snow density (SWE= zsnowρsnow).
The depth can be found by picking the two-way travel time
of the ground reflection and, if applicable, the snow surface
reflection and then using the velocity estimate to convert time
to depth. Using Eq. (1), we convert radar velocity to the di-
electric constant (v = c/

√
κ ′) and estimate the density of dry

snow with the following empirical relationship (Tiuri et al.,
1984):

κ ′d = 1+ 1.7ρ+ 0.7ρ2, (6)

where κ ′d is the dielectric constant and ρ is the density of dry
snow.

In this paper, we are primarily concerned with measur-
ing radar velocities and we assume that our data measure
the properties of dry snow. The dry snow assumption can
be tested from the data by analyzing the attenuation proper-
ties of the snowpack (Bradford et al., 2009). Because the real
part of the dielectric constant for water (∼ 80) is much larger
than that of snow (∼ 1.5–2) and the imaginary part, which de-
scribes the attenuation of the signal, is non-negligible (Brad-
ford at al., 2009), the radar signal will travel at a slower
velocity and attenuate more rapidly when liquid water is
present in the snow. The attenuation coefficient for radar
waves in water is frequency dependent (i.e., Turner and Sig-
gins, 1994), with the higher frequencies attenuating more
rapidly that the lower frequencies because they go through
more cycles per distance traveled.

To test the dry snow assumption, we compare the fre-
quency content of the ground reflection to a reference event
(the direct arrival for ski-pulled data and the snow surface
reflection for the snowmobile-collected data). We calculate
the maximum local instantaneous frequency (Fomel, 2007)
within a time window surrounding the event of interest and
then average this value across all of the traces in the GPR im-
age. The standard deviation provides an estimate of the mea-
surement uncertainty. We note that at 500 MHz a small shift
in frequencies results in a non-negligible volumetric water
content.

3 Data and results

Snow depth, density, and SWE estimates for all of our GPR
profiles and pits are summarized in Tables 1 and 2. Here we
discuss the processing and describe results for a synthetic
data set and two representative field data sets.
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Figure 4. Dix velocities for point diffractors as a function of depth for different hyperbola widths. The true interval velocity is 0.230 m ns−1

(red line) and the Dix velocities are shown as black lines. The red dashed line is at 0.234 m ns−1, which is 2 % greater than the true velocity.

Table 2. Summary of GPR field data and comparison to manual measurements.

GPR predictions at pit Error compared to pit/probe

GPR Collection Acquisition Pit/ Depth ρ SWE Depth ρ SWE
profile date mode probe pred. (m) (kg m−3) (m)

Line 1 25 Feb 15 Ski Pit 1 1.29± 0.06 288± 50 0.37± 0.07 2.6 % 5.5 % 8.0 %
Line 21 25 Feb 15 Ski Pit 2 1.59± 0.04 294± 40 0.46± 0.03 0.1 % 6.0 % 6.0 %
Line 31 25 Feb 15 Snowmobile Pit 2 1.10± 0.05 354± 65 0.39± 0.06 230.0 % 13 % 221 %
Line 4 11 Mar 15 Snowmobile Pit 3 1.50± 0.08 389± 92 0.53± 0.09 6.0 % 3 % 2.0 %

Pit 4 1.91± 0.12 394± 97 0.69± 0.13 6.0 % 10 % 6.1 %
Probes 3RMSE= 0.13 m

(9 %)
Line 51 17 Mar 15 Snowmobile Probes NA NA NA 3RMSE= 0.38 m NA NA

(18 %)
Line 61 17 Mar 15 Snowmobile Probes NA NA NA 3RMSE= 0.19 m NA NA

(11 %)

1 Lines 2, 3, 5, and 6 are described in the Supplement. 2 Line 3 was located 1.5 m off of Pit 2, disagreement between depth and SWE measurements at this site reflect
lateral variations in snow depth. 3 RMSE percentages are calculated relative to the mean observed depth along each profile.

3.1 Synthetic test

As a first test on the reliability of migration focusing analysis
for reconstructing radar velocities, we performed the analy-
sis on a synthetic data set generated with REFLEX software.
The synthetic data set was generated using a 500 MHz Kuep-
per wavelet sampled at 0.0332 ns and traces are 0.01 m apart.

The synthetic model is 50 m long and consists of a 0.5 m
thick layer of air overlying a 0.24 m ns−1 layer of snow (cor-
responding to a density of 0.29 kg cm−3) with depths that
range from 0.5 to 5.7 m. Beneath the snow is a 0.10 m ns−1

layer representative of soil. Along the snow–soil interface

there are 16 diffractors buried at depths ranging from 0.5 to
5.7 m. The purpose of this data set (Fig. 5a) was to test the
performance of the Dix equation on velocities estimated from
the MVA analysis and, since the migration velocity changes
as a function of snow depth, to see if we can resolve lateral
variations in velocity.

After applying the PWD filter, the ground reflection was
adequately suppressed (Fig. 5b). We migrated the filtered im-
age at 0.002 m ns−1 intervals from 0.18 to 0.28 m ns−1and
measured the optimal migration velocity for each diffractor
by computing V in an 8 m wide sliding window (Fig. 5c).
We use the Dix equation to convert the migration velocities
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Figure 5. Synthetic data set and velocity picking. (a) Synthetic data before filtering. (b) After PWD filtering. (c) Varimax norm for sliding
window 8 m wide. (d) Velocities from synthetic data set as a function of diffractor depth. The solid blue line shows measured migration
velocities; dashed blue lines show uncertainty bounds. The solid red line shows velocities computed with the Dix equation; dashed red lines
show uncertainty bounds. The solid black line shows the true velocity (0.24 m ns−1). The light gray region indicates where velocities are
within 2 % of the true velocity, and the dark gray region shows where velocities are with 5 % of the true velocity.

to the velocity of the snow layer (Fig. 5d). The average of all
snow velocity measurements is 0.241 m ns−1 with a standard
deviation of 0.002 m ns−1.

There is no systematic relationship between the veloci-
ties recovered and the depth of the diffractor (Fig. 5d). The
shallowest diffractor was at ∼ 0.5 m depth and the recovered
velocity was 0.232 m ns−1. The greatest differences between
recovered and true velocities were for diffractors at depths of
0.5, 1.6, 2.2, and 2.3 m. Here the recovered velocities were
0.232, 0.247, 0.247, and 0.248 m ns−1. The shallowest ob-
servation underestimates the true velocity, which is the op-
posite of the effect predicted by our travel-time modeling
(Sect. 2.6, Fig. 4). The observations for diffractors between
1.5 and 2.3 m all overestimate the true velocity by approxi-
mately the same amount. We conclude that the Dix equation
is appropriate for snow depths of 0.5 m and greater.

Although the snow in this synthetic model has a constant
velocity, the migration velocity changes as a function of the
snow depth due to the changing proportions of air and snow
in the total travel path. Where the snow is shallow, the ve-
locities are highest and, where the snow is deep, the veloc-
ities are low. That the method is capable of resolving lat-
eral velocity variations in this synthetic example is evident in
Fig. 5c, where the picked velocities are negatively correlated
with snow depth.

3.2 Ski-pulled GPR data

We collected two GPR profiles in the ski-pulled configura-
tion on 25 February 2015, in below-freezing conditions. A
representative line, Line 1 (Fig. 6), is 74 m long and shows an
abundance of diffractions along the snow–ground interface,
likely a result of small boulders, and a few isolated diffrac-
tions within the snowpack, most likely small trees, bushes,
or logs. After interpolation to equal spacing, trace spacing
was 0.0362 m. Since the antenna was coupled to the snow,
we compare the average frequency of the direct wave to that
of the soil reflection to determine whether there is any liq-
uid water present in the snowpack. The average frequency of
the direct arrival for every trace in the image along Line 1 is
410 MHz with a standard deviation of 10 MHz, and the aver-
age frequency of the soil reflection across the whole line is
457 MHz with a standard deviation of 42 MHz. The soil re-
flection appears to have a higher-frequency content than the
reference frequency, perhaps due to thin-layer “tuning” ef-
fects. Since we do not observe a decrease in frequency with
travel time, we infer that there was no liquid water present in
the snow on this day.

After the PWD filtering step we are left with many diffrac-
tions along the ground surface and a few isolated events
within the snowpack (Fig. 6b). We compute V in 10 m wide
sliding windows and pick the velocity that corresponds to
the peak value of V (Fig. 5d, blue line). After smooth-
ing these picks (Fig. 6d, red line) we obtain velocities
between 0.237 and 0.276 m ns−1, with an average uncer-
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Figure 6. (a) Raw GPR data for Line 1, (b) GPR data after PWD filtering, (c) diffractions migrated at the mean velocity (0.245 m ns−1) for
the entire line, and (d) normalized varimax curves for a 10 m wide sliding window. The blue curve shows the peak value for every curve; the
red line is smoothed with a 10 m wide box car averaging filter.

Figure 7. Line 1 results: (a) density, (b) snow depth (black line), and SWE (blue line) estimates from the GPR data; snow pit data are shown
in red. Grayed out region corresponds to areas where velocity picks are unreliable.

tainty of 0.01 m ns−1, corresponding to densities of 313 to
145 kg m−3. It is unlikely that the snow density is as low as
145 kg m−3, and the velocity measurements that yield such
unlikely results are confined to the region between x ∼ 30–
55 m. Either the diffractors along this part of the line are all
too large to meet our point diffractor assumption or the noise
levels in the image are higher than the signal.

Excluding the picks between x = 30 and 55 m, we esti-
mate snow densities between 193 and 311 kg m−3, with an
average density of 274 kg m−3. Notably, the low-density esti-
mates are from the part of the profile near x = 55–65 m where
a prominent set of mid-snow diffractors exist. The two-way
travel time to the tops of these diffractors is ∼ 7.414 ns,
which at the observed migration velocity of 0.256 m ns−1

yields a depth estimate of ∼ 0.95 m. Thus, this snow density
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Figure 8. (a) Raw GPR data for Line 4; red lines indicate interpreted ground and snow reflection. (b) GPR data after PWD filtering,
(c) diffractions migrated at the mean velocity (0.249 m ns−1) for the entire line, and (d) normalized varimax curves for a 10 m wide sliding
window. The blue curve shows the peak value for every curve; the red line is smoothed with a 10 m wide box car averaging filter.

estimate of 193 kg m−3 corresponds to the upper 0.95 m of
snow. Estimated snow depths, densities, and SWE along the
entire profile are shown in Fig. 7.

We measured snow density and depth in Pit 1 lo-
cated at 68 m along Line 1 (Fig. 7). The snow pit
showed a depth of 1.33 m and an average density of
300± 40 kg m−3 resulting in a SWE measurement of
0.40± 0.07 m. GPR-derived estimates at the pit loca-
tion are as follows: snow depth= 1.28± 0.06 m, den-
sity= 288± 50 kg m−3, and SWE= 0.37± 0.07 m. The av-
erage density of the upper 0.95 m of snow in this pit is
190 kg m−3 (Fig. S1 in the Supplement), which is very close
to the value estimated from the GPR data between x = 55
and x = 65 m.

3.3 Snowmobile-mounted GPR data

We collected four GPR profiles in the snowmobile-mounted
configuration between 25 February and 17 March 2015.
Here we discuss the processing of a representative profile,
Line 4 (Fig. 8), which was collected on the morning of
11 March 2015 in a flat meadow just south of Wyoming
Highway 130. This line is 98 m long and shows an abundance
of diffractions along the snow–ground interface (Fig. 8).
After interpolating to equal spacing, the trace spacing was
0.024 m.

Migration velocities on this line range from 0.237 to
0.277 m ns−1 with an average uncertainty of ±0.01 m ns−1.
The corresponding snow velocities are 0.207 and
0.268 m ns−1. Here, the exceptionally high velocities
are confined to a region between x = 65 and x = 85 m where
a number of diffractions from obviously large objects are

present (Fig. 8). If we exclude velocity picks from this re-
gion, we get a maximum migration velocity of 0.266 m ns−1

and a maximum snow velocity of 0.251 m ns−1. Estimated
snow depths range from 0.7 to 2.1 m with an average uncer-
tainty of ±0.1 m. Estimated snow densities range from 228
to 532 kg m−3 with an average uncertainty of ±50 kg m−3.
Estimated SWE ranges from 0.25 to 0.71 m with an average
uncertainty of ±0.09 m.

Snow pits 3 and 4 are located at 50 and 97 m along
the profile and showed average snow densities of 379± 50
and 360± 48 kg m−3, SWE values of 0.54± 0.13 and
0.64± 0.13 m, and snow depth values of 1.44± 0.05 and
1.8± 0.05 m, respectively. The GPR-derived depth, den-
sity, and SWE estimates at 50 and 97 m were 1.50± 0.08
and 1.91± 0.12 m, 389± 92 and 394± 97 kg m−3, and
0.53± 0.09 and 0.70± 0.13 m. GPR-derived estimates for
the whole profile are shown in Fig. 9. We also measured 21
snow depths at 5 m intervals (Fig. 9b) along this profile. The
RMS error between observed and estimated depths is 0.13 m.

During data acquisition on Line 7, the air temperature was
5 ◦C, raising the possibility of liquid water in the snow. The
average frequency of the snow reflection for every trace in
the image is 435 MHz with a standard deviation of 27 MHz,
and the average frequency of the soil reflection across the
whole line is 464 MHz with a standard deviation of 38 MHz.
Again, the frequency content of the soil reflection appears
to be higher than the reference frequency. Within the uncer-
tainty bounds there is no resolvable frequency change and we
conclude that our dry snow assumption is valid.
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Figure 9. Line 4 results: (a) density; (b) snow depth (black line) and SWE (blue line) estimates from the GPR data; snow pit data are shown
in red. Grayed out region corresponds to areas where velocity picks are unreliable.

Figure 10. Cross plots of predicted data (horizontal axis) vs. GPR estimates (vertical axis) for all data: (a) snow depths, (b) density, and
(c) SWE. Black crosses represent estimates using automatically picked velocities and red crosses represent estimates using the mean velocity
for each GPR profile.

4 Discussion

The primary purpose of this study is to develop an efficient
processing flow for measuring GPR velocity and thus snow
density SWE from common-offset data that requires a mini-
mum amount of human interpretation. Common-offset GPR
data are fast and easy to obtain, and velocity estimates can
be made when diffractions are present. However, the com-
mon methods of visually inspecting migrated images or fit-
ting curves to diffraction hyperbolas are time-consuming and
subject to human error. The migration velocity analysis de-
scribed in this paper provides an efficient means for extract-
ing velocity information from large GPR data sets. Here we
discuss the accuracy and efficiency of the method as well as
the level of automation.

To validate the method, we compared estimated snow den-
sities, depths, and SWE to observations made in four snow

pits and to 86 probed snow depth measurements. The results
are summarized in Table 2 and in Fig. 10. If we exclude the
two obvious outliers (Fig. 10a), the RMS error for our depth
predictions for the remaining 88 depth observations is 12 %
of the mean snow depth observation. The RMS errors for
snow density and SWE relative to the mean observed val-
ues are 15 and 18 %. Averaging the velocities across the en-
tire line (Fig. 10, red crosses) reduces the difference between
predicted and observed depth values to an RMS error of 9 %,
suggesting that lateral variations in snow velocity are mini-
mal. Averaging the velocities across the entire line reduces
the RMS errors for density and SWE to 8 and 10 %, respec-
tively.

The greatest potential for systematic error in this analy-
sis is the presence of diffracting objects whose dimensions
exceed the radius of the first Fresnel zone. The field data
offer the opportunity to evaluate the influence of diffractor
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size on velocity estimates. Line 1, for example, shows four
prominent diffractions between 50 and 70 m. The varimax
norm has a maximum value at 0.256 m ns−1, which is the
velocity that focuses the two leftmost diffractions (Fig. 6c).
The diffractions on the right are clearly not focused because
they are caused by an object (most likely a log) with a ra-
dius greater than the first Fresnel zone. Because the leftmost
two have a higher amplitude than the others, they have the
largest influence on the varimax value. Thus, although there
are clearly events in the field data that have the potential to
give erroneous results, our results suggest that reliable veloc-
ity estimates can be achieved so long as the majority of the
diffracted energy is related to objects that can be considered
point diffractors.

One of our main goals was to produce a processing flow
that allows for the rapid processing of common-offset GPR
data with minimal user interaction. The two most time com-
putationally expensive parts of the processes are the migra-
tions and the varimax calculations. As an example, on a
2016 MacBook Pro with a 2 GHz processor, for the ∼ 100 m
long Line 4, performing 51 migrations takes approximately
5 min, the varimax calculation takes about half as long, and
the PWD filtering takes a few seconds. The most time-
consuming part of the process is picking the arrival times of
snow surface and ground surface reflections.

Although the processing flow is relatively efficient, it does
require some user interaction. The PWD method of separat-
ing continuous reflectors from diffractions treats the GPR im-
age as the superposition of locally planar waves. Estimating
the slope of these waves from the image requires the solution
of a regularized inverse problem and the smoothness of the
slope-field depends on the choice of regularization parame-
ter. This is the most subjective step of the process, as it may
require several attempts to find the optimal smoothness con-
straints to adequately suppress reflections in the GPR image.
However, for our data the majority of the diffractions are lo-
cated along the ground surface and the internal structure of
the snowpack shows dips that closely parallel the ground re-
flection. A good first guess, and often a good final guess, for
the dip field can be computed by picking the arrival times of
the ground reflection. Because the ground reflection has to be
interpreted to measure snow depth, this strategy can signifi-
cantly reduce the processing time for each data set.

The data presented in this paper contained an abundance of
diffractions located near the soil–ground interface allowing
an average velocity for the entire snowpack to be obtained.
These events are likely due to small-scale variations in sur-
face topography, rocks, and/or vegetation along the ground
surface, which may not be present in all environments. How-
ever, we note that mountain watersheds free of vegetation,
small undulations in surface topography, and surface rocks
are probably rare. Thus, the method may be useful in many
regions where a seasonal snowpack exists.

5 Conclusions

We applied the migration focusing analysis presented in
Fomel et al. (2007) to the problem of estimating SWE in
seasonal snow. The method was most accurate for the case
when the GPR was in contact with the snow, providing GPR-
derived SWE estimates within 6 % of the manual observa-
tion. When the GPR was mounted on a snowmobile, the re-
sults were within 12–21 % of the manual observations.

Data availability. GPR, snow density, and snow depth data are
available at https://doi.org/10.15786/M2W01X (St. Clair and Hol-
brook, 2017).
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