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Abstract. Understanding of long-term dynamics of glaciers
and ice caps is vital to assess their recent and future changes,
yet few long-term reconstructions using ice flow models ex-
ist. Here we present simulations of the maritime Hardanger-
jøkulen ice cap in Norway from the mid-Holocene through
the Little Ice Age (LIA) to the present day, using a numeri-
cal ice flow model combined with glacier and climate recon-
structions.

In our simulation, under a linear climate forcing, we find
that Hardangerjøkulen grows from ice-free conditions in the
mid-Holocene to its maximum extent during the LIA in a
nonlinear, spatially asynchronous fashion. During its fastest
stage of growth (2300–1300 BP), the ice cap triples its vol-
ume in less than 1000 years. The modeled ice cap extent and
outlet glacier length changes from the LIA until today agree
well with available observations.

Volume and area for Hardangerjøkulen and several of its
outlet glaciers vary out-of-phase for several centuries dur-
ing the Holocene. This volume–area disequilibrium varies in
time and from one outlet glacier to the next, illustrating that
linear relations between ice extent, volume and glacier proxy
records, as generally used in paleoclimatic reconstructions,
have only limited validity.

We also show that the present-day ice cap is highly
sensitive to surface mass balance changes and that the
effect of the ice cap hypsometry on the mass balance–
altitude feedback is essential to this sensitivity. A mass
balance shift by +0.5 m w.e. relative to the mass balance
from the last decades almost doubles ice volume, while

a decrease of 0.2 m w.e. or more induces a strong mass
balance–altitude feedback and makes Hardangerjøkulen dis-
appear entirely. Furthermore, once disappeared, an additional
+0.1 m w.e. relative to the present mass balance is needed to
regrow the ice cap to its present-day extent. We expect that
other ice caps with comparable geometry in, for example,
Norway, Iceland, Patagonia and peripheral Greenland may
behave similarly, making them particularly vulnerable to cli-
mate change.

1 Introduction

The 211 000 glaciers and ice caps (GICs) (Pfeffer et al.,
2014; Arendt et al., 2015) in the world are relatively small
compared to the Greenland and Antarctic ice sheets, but
they constitute about half of the current cryospheric contri-
bution to sea level rise (Shepherd et al., 2012; Vaughan et al.,
2013), a distribution projected to remain similar throughout
the 21st century (Church et al., 2013; Huss and Hock, 2015).
Since areas of GICs are more readily available than their vol-
ume, scaling methods are commonly employed to estimate
total ice volumes and their sea level equivalents (e.g., Bahr
et al., 1997, 2015; Grinsted, 2013). Many of these GICs are
ice caps, though little is known about their response to long-
term climate change, how a particular ice cap geometry con-
tributes to this sensitivity or how scaling methods perform
for ice caps.
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Table 1. Constants and parameter values used in this study.

Parameter Symbol Unit Value

Ice density ρi kg m−3 917
Gravitational acceleration g m s−2 9.81
Flow factor A s−1 Pa−3 0.95× 10−24 to 2.4× 10−24

Sliding parameter β m s−1 Pa−1 4× 10−12 to 1× 10−13

Sliding law exponent m 1
Glen’s law exponent n 3
Mesh resolution 1x m 200–500
Time step 1t a 0.02

Reconstructions of past climate and glacier variations con-
tribute to our understanding of long-term glacier behavior.
However, these studies often build on simple glaciological
assumptions relating proxies, ice extent, ice volume and cli-
mate (e.g., Hallet et al., 1996). As glaciers are nonlinear sys-
tems with feedbacks, such relations are difficult to constrain
without a numerical model. However, long-term reconstruc-
tions using ice flow models are rare. Most existing quanti-
tative modeling studies of GICs are restricted to timescales
of decades (e.g., Leysinger-Vieli and Gudmundsson, 2004;
Raper and Braithwaite, 2009) or centuries (Jouvet et al.,
2009; Giesen and Oerlemans, 2010; Aðalgeirsdóttir et al.,
2011; Zekollari et al., 2014; Zekollari and Huybrechts, 2015;
Ziemen et al., 2016). Only a very limited number of stud-
ies exist for the longer timescales (e.g., Flowers et al., 2008;
Laumann and Nesje, 2014). Studies focusing on glacier evo-
lution since the Little Ice Age (LIA) (e.g., Giesen and Oer-
lemans, 2010; Aðalgeirsdóttir et al., 2011; Zekollari et al.,
2014) normally perturb a present-day glacier or ice cap with
a climate anomaly relative to the modern and do not explic-
itly consider the ice cap history preceding the LIA.

In this study, we use a numerical ice flow model to pro-
vide a quantitative, long-term, dynamical perspective on the
history and current state of the Hardangerjøkulen ice cap
in southern Norway. These results are also relevant for our
understanding of the history and future stability of similar
ice masses in, e.g., Norway (Nesje et al., 2008a), Iceland
(Aðalgeirsdóttir et al., 2006), Patagonia (Rignot et al., 2003),
Alaska (Berthier et al., 2010) and peripheral Greenland (Ja-
cob et al., 2012). We present a plausible ice cap history over
several thousand years before the LIA (Sect. 4.1) and use
this as a starting point for simulations from LIA to present
day (Sect. 4.2). To evaluate the sensitivity of the ice cap to
the choice of dynamical model parameters, we perform an
ensemble of simulations with different dynamical model pa-
rameters (Sect. 4.2.1). Furthermore, we quantify the sensitiv-
ity of Hardangerjøkulen to climatic change (Sect. 4.3).

We find that Hardangerjøkulen is exceptionally sensitive
to surface mass balance changes and that the surface mass
balance–altitude feedback and ice cap hypsometry are cru-
cial to this sensitivity. To constrain the assumptions made

in glacier reconstructions and volume–area scaling applica-
tions, we assess the degree of linearity between ice cap vol-
ume and area (Sect. 4.4). We show that commonly used scal-
ing relations overestimate ice volume and suggest that glacier
and climate reconstructions could benefit from quantify-
ing the impact on proxy records of bed topography, glacier
hypsometry and the surface mass balance–altitude feedback
(Sect. 5.5).

2 Hardangerjøkulen ice cap

2.1 Present-day geometry

2.1.1 Surface topography

Hardangerjøkulen (60◦55′ N, 7◦25′ E) has a present-day
(year 2012) area of 73 km2 (Andreassen et al., 2012) and
is located at the western flank of the Hardangervidda
mountain plateau. The ice cap is rather flat in the in-
terior with steeper glaciers draining the plateau (Fig. 1).
The largest outlet glaciers are Rembesdalskåka (facing W–
SW; 17.4 km2), Midtdalsbreen (NE; 6.8 km2), Blåisen (NE;
6.6 km2) and Vestre Leirbotnskåka (S–SE; 8 km2). Surface
elevation ranges from 1020 to 1865 m a.s.l. (Andreassen
et al., 2016), with 80 % of the ice cap area and 70 %
of Rembesdalskåka, situated above the mean equilibrium-
line altitude (ELA) at 1640 m a.s.l. (1963–2007 average;
Giesen, 2009). Rembesdalskåka drains towards the dammed
lake Rembesdalsvatnet, located ∼ 1 km from the present-
day glacier terminus (Kjøllmoen et al., 2011). Midtdals-
breen is a gently sloping outlet glacier ranging from 1380 to
1865 m a.s.l.

2.1.2 Ice thickness and bed topography

A number of surveys have mapped the ice thickness at
Hardangerjøkulen (e.g., Sellevold and Kloster, 1964; Elve-
høy et al., 1997; Østen, 1998, K. Melvold, unpublished
data), with the highest measurement density for Midtdals-
breen (Fig. 2.12a in Giesen, 2009; Willis et al., 2012). In
areas with dense measurements, ice thickness was interpo-
lated using methods detailed in Melvold and Schuler (2008).
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Figure 1. Bed (coloring) and surface (contours) topography of Hardangerjøkulen ice cap. Contour interval is 20 m and created from a
digital elevation model by Statens Kartverk (1995). The reference system is UTM zone 32N (EUREF89). Ice cap outline and drainage basins
from 2003 are indicated (data from cryoclim.net), as well as surrounding lakes (drawn after Statens Kartverk N50 1 : 50 000). Shown are GPS
positions for velocity measurements (numbered triangles), mass balance stakes from NVE (squares) and location of the automatic weather
station (star). Inset: map of southern Norway showing the location of Hardangerjøkulen (H).

In sparsely measured areas, ice thickness H was estimated
directly from the surface slope α, assuming perfect plastic-
ity (Paterson, 1994, p. 240). Based on detailed ice thick-
ness measurements and information on the surface slope on
Midtdalsbreen, a yield stress of 150–180 kPa was used, in
agreement with other mountain glaciers (Cuffey and Pater-
son, 2010, p. 297; Zekollari et al., 2013). Over the flat areas
near ice divides and ice ridges, as well as near ice margins,
manual extrapolation was required to obtain a smooth ice sur-
face (K. Melvold, personal communication, 2009). A map of
bed topography (Fig. 1) was produced by combining the fi-
nal ice thickness map with a surface DEM (year 1995) from
the Norwegian Mapping Authority, derived from aerial pho-
tographs.

2.2 Past geometry

2.2.1 Holocene changes

Reconstructions show that glaciers in southern Norway did
not survive the mid-Holocene thermal maximum (e.g., Bakke
et al., 2005; Nesje, 2009). Based on lake sediments and ter-
restrial deposits, Hardangerjøkulen is estimated to have been

absent from ca. 7500 to 4800 BP (Dahl and Nesje, 1994), al-
though a short-lived glacier advance is documented for the
southern side of the ice cap at ca. 7000 BP (Nesje et al.,
1994). Some high-frequency glacier fluctuations of local
northern glaciers occurred during the period 4800–3800 BP,
after which Hardangerjøkulen has been present continuously
(Dahl and Nesje, 1994). There are few quantitative con-
straints on ice cap extent for the period from ice cap incep-
tion 4000 BP until the LIA. However, interpretations of lake
sediments and geomorphological evidence suggest a grad-
ual growth of Hardangerjøkulen during this period (Dahl and
Nesje, 1994, 1996).

2.2.2 Outlet glacier changes since the Little Ice Age

Length changes extracted from maps and satellite imagery,
moraine positions and direct front measurements are com-
bined to derive length records for two major outlet glaciers
for the period 1750–2008. For Rembesdalskåka, we use
the same flowline as the Norwegian Water and Energy Di-
rectorate (NVE) use for their mass balance measurements
(H. Elvehøy, personal communication, 2014). The NVE
flowline for Midtdalsbreen was slightly modified to better
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correspond with the maximum ice velocities. Since changes
are only made upglacier of the present-day margin, they do
not interfere with the area where data of frontal changes ex-
ist.

The LIA maximum for Midtdalsbreen is dated to AD 1750
with lichenometry (Andersen and Sollid, 1971). For Rembes-
dalskåka, the outermost terminal moraine has not been dated
but is assumed to originate from the LIA maximum.

Frontal observations for Rembesdalskåka began in 1917.
These have been performed for 22 of the years during the pe-
riod 1917–1995 and are done annually since 1995. For Midt-
dalsbreen, an annual length change record exists from 1982
onwards (Kjøllmoen et al., 2011). At present, Rembesdal-
skåka has retreated almost 2 km from its LIA maximum ex-
tent and Midtdalsbreen ∼ 1 km.

The two outlet glaciers considered advanced in response to
snowy winters around 1990. The terminus change from 1988
to 2000 for Rembesdalskåka was +147 m and for Midtdals-
breen +46 m. By 2013, Rembesdalskåka and Midtdalsbreen
had retreated 332 and 164 m, respectively, from their po-
sitions in 2000 (Andreassen et al., 2005, Kjøllmoen et al.,
2011, Cryoclim.net, 2014).

2.3 Climate

2.3.1 Holocene and Little Ice Age climate

Reconstructions for southern Norway based on pollen and
chironomids suggest that summer temperatures were up to
2 ◦C higher than present in the period between 8000 and
4000 BP, when solar insolation was higher (Nesje and Dahl,
1991; Bjune et al., 2005; Velle et al., 2005a). At 4000 BP,
proxy studies suggest a drop in summer temperatures to
0.5 ◦C lower than present combined with a drier climate
(Dahl and Nesje, 1996; Bjune et al., 2005; Velle et al., 2005b;
Seppä et al., 2005).

Dahl and Nesje (1996) reconstructed Holocene summer
temperatures for southern Norway based on former pine-
tree limits. Using a well-established empirical relationship
between summer temperature and winter precipitation at
the ELA of Norwegian glaciers (Liestøl in Sissons, 1979;
Sutherland, 1984), they estimated winter precipitation for the
Hardangerjøkulen area from lake sediment-derived ELAs.
These reconstructions suggest a close to linear cooling and
wetting trend from 4000 BP until the LIA, including a possi-
ble warm event lasting for several centuries around 2000 BP
(Velle et al., 2005a).

The LIA climate in southern Norway is likely to have ex-
perienced more precipitation (Nesje and Dahl, 2003; Nesje
et al., 2008b; Rasmussen et al., 2010) and was ca. 0.5–1.0 ◦C
colder than present (Kalela-Brundin, 1999; Nordli et al.,
2003), although some reconstructions indicate milder sum-
mers during the first quarter of the 18th century (Kalela-
Brundin, 1999).

2.3.2 Present climate

Southern Norway is located in the Northern Hemisphere
westerly wind belt and is heavily influenced by moist, warm
air picked up by the frequent storms coming off the Atlantic
Ocean (Uvo, 2003). When these winds reach the mountain-
ous west coast, orographic lifting occurs and precipitation
falls as rain or snow, depending on elevation. Conversely,
eastern Norway is located in the rain shadow of the coastal
mountains and the high mountain plateau Hardangervidda.

This strong west–east precipitation gradient is illustrated
by the mean annual precipitation for 1961–1990 over south-
ern Norway. Precipitation in Bergen, 65 km west of Hardan-
gerjøkulen, reaches 2250 mm a−1 (data from eklima.no, Nor-
wegian Meteorological Institute). In contrast, Oslo in east-
ern Norway receives 763 mm precipitation per year. Liset,
17 km southeast of the summit of Hardangerjøkulen, receives
1110 mm a−1, while Finse, 8 km northeast of the summit, ex-
periences 1030 mm a−1. Finse has a mean annual tempera-
ture of −2.1 ◦C, while temperature is not measured at Liset.

2.4 Surface mass balance

Glaciological mass balance measurements started on Rem-
besdalskåka in 1963. The mean net balance for the
period 1963–2010 was slightly positive (+0.08 m w.e.
– water equivalent), divided into a winter balance of
+2.10 m w.e. and a summer balance of −2.03 m w.e. (Kjøll-
moen et al., 2011).

For Midtdalsbreen, mass balance was only measured
in 2000 and 2001 (Krantz, 2002). This 2-year time series is
too short for a robust surface mass balance comparison be-
tween the two outlet glaciers.

Specific mass balance profiles for the entire elevation
range of Rembesdalskåka exist for 35 of the 45 mass balance
years (1 October–30 September) in the period 1963–2007.
The interannual variability around the mean winter profile
is similar at all elevations, while the range in summer bal-
ances increases from high to low elevations (Fig. 2.7a in
Giesen, 2009). The decrease in mass balance at the highest
elevations is a persistent feature of the winter mass balance
and is strongest in years with large accumulation (Fig. 5.3
in Giesen, 2009). Its origin is, however, uncertain and long-
term snow depth measurements on several outlet glaciers are
needed to identify the underlying process.

The net balance profile has a similar shape for most
years, and the relation between net mass balance and al-
titude is approximately linear from the terminus up to
1675 m a.s.l. (Fig. 2), with a mass balance gradient of
0.0097 m w.e. per meter altitude. The net mass balance is
zero at 1640 m a.s.l., marking the ELA. Above the ELA, the
mass balance gradient decreases with altitude and becomes
negative at the highest elevations (Fig. 2).

The Cryosphere, 11, 281–302, 2017 www.the-cryosphere.net/11/281/2017/



H. Åkesson et al.: Simulating the evolution of Hardangerjøkulen ice cap 285

Surface mass balance (m w.e.)
-8 -6 -4 -2 0 2

E
le

va
tio

n 
(m

 a
.s

.l.
)

1000

1200

1400

1600

1800

ELA
ref

ELA
+1 m w.e.

B
ref

B
obs
"B = 1.0 m w.e.
"B = -1.0 m w.e.

Figure 2. Reference net surface mass balance (Bref) profile used
in the model runs, based on the mean observed (Bobs) profile for
35 of the 45 years 1963–2007. At lower elevations, a linear gra-
dient is used; for the highest elevations, a third-order polynomial
is fitted to the observed values. Shown are also 1B(t)=−1.0 and
+1.0 m w.e., examples of how temporal mass balance changes are
imposed (Eq. 6), along with corresponding ELAs. For −1.0 m w.e.,
mass balance is negative at all elevations, and thus ELA is above
the summit. Data from NVE.

2.5 Ice dynamics

2.5.1 Basal conditions

Although bed conditions are not well known, based on the
sparse sediment cover in the surrounding areas (Andersen
and Sollid, 1971) we assume Hardangerjøkulen to be hard-
bedded, i.e., without any deformable subglacial sediments
present.

Given its climatic setting and based on the radar inves-
tigations described in Sect. 2.1.2, Hardangerjøkulen can be
characterized as a temperate ice cap. To the contrary, tem-
perature measurements suggest that Midtdalsbreen has local
cold-based areas at its terminus (Hagen, 1978; Konnestad,
1996; Reinardy et al., 2013). However, we expect that this
has a minor effect on the large-scale ice flow of Midtdals-
breen and Hardangerjøkulen.

2.5.2 Surface velocities

Over the lower ablation zone of Midtdalsbreen, surface
speeds of 4–40 m a−1 were measured during summer 2000
(Vaksdal, 2001). In addition, ice velocities were derived from
Global Positioning System (GPS) units recording at nine lo-
cations on Hardangerjøkulen during the period May 2005–
September 2007 (Giesen, 2009). One GPS was mounted on
the automatic weather station (AWS) on Midtdalsbreen, the
other eight were situated on stakes at the ELA of the main
outlet glaciers (Fig. 1). These data show highest velocities for
the largest outlet glacier Rembesdalskåka (46 m a−1). Veloc-
ities at Midtdalsbreen, measured May 2005 to March 2006,

were 33 m a−1 at the ELA and ∼ 20–22 m a−1 at the AWS,
which is within the range of ablation zone summer velocities
suggested by Vaksdal (2001).

Since velocities have only been measured for single years
or shorter, these observations provide guidance rather than
serving as calibration or validation data for our model. To
the authors’ knowledge, there are no high-resolution veloc-
ity data derived from remote sensing covering the area of
interest.

3 Model description and setup

3.1 Ice flow model

We use the two-dimensional, vertically integrated shallow ice
approximation (SIA) within the finite-element Ice Sheet Sys-
tem Model (ISSM; Larour et al., 2012). Only the capabilities
of ISSM relevant for this paper are covered here; for a com-
plete description, including a more comprehensive section on
model numerics and architecture, we refer to Larour et al.
(2012) and http://issm.jpl.nasa.gov.

The SIA is based on a scaling analysis of the Stokes stress
balance (Hutter, 1983; Morland, 1984). This scaling argu-
ment assumes that the typical glacier length, L, is much
larger than the typical ice thickness H . For this purpose, the
aspect-ratio ε is defined as

ε =
[H ]

[L]
, (1)

where ε describes the “shallowness” of an ice mass. An as-
pect ratio much smaller than unity is required for the SIA
to be valid. Generally, the smaller the ε, the more accurate
the SIA is (Le Meur et al., 2004; Greve and Blatter, 2009;
Winkelmann et al., 2011). Based on outlet glacier length
records from the LIA until today, the characteristic horizontal
scale for Hardangerjøkulen is 4 to 10 km. Due to the highly
variable bed topography, a typical vertical scale of∼ 200 m is
estimated qualitatively using ice thickness around the ELA.
These scales give an ε between 0.02 and 0.05, which is ac-
ceptable for using the SIA (Le Meur and Vincent, 2003).

The SIA has proven accurate in representing glacier length
and volume fluctuations on the decadal and longer timescales
we are focusing on (Leysinger-Vieli and Gudmundsson,
2004). While higher order models may be needed in dynamic
regions, even for paleosimulations (Kirchner et al., 2016),
Hardangerjøkulen has relatively gentle surface slopes and
lacks areas of very fast flow, making the SIA a viable choice.

Because of its simplicity, SIA is also computationally effi-
cient (Rutt et al., 2009), enabling ensemble simulations over
longer timescales.

3.1.1 Ice deformation and sliding

The constitutive relationship relating stress to ice deforma-
tion (strain rate) is Glen’s flow law (Glen, 1955), which for
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the special case of vertical shear stress τxz only (SIA) states

ε̇ = Aτnxz, (2)

where ε̇ is the strain rate tensor, A is the flow factor account-
ing for ice rheology and n= 3 is Glen’s flow law exponent.
We use a spatially constant flow factor A, assuming homoge-
neous ice temperature Tice and material properties across the
ice cap.

In contrast to many other studies, where a tuned “best-
fit” parameter combination is selected and used in all sim-
ulations, we perform ensemble runs for a parameter space
of different flow factors and sliding parameters (described
below), for both the calibration procedure and subsequent
model runs.

SIA is strictly only valid for a no-slip bed (Guðmunds-
son, 2003; Hindmarsh, 2004). However, Hardangerjøkulen
is a temperate ice cap, and summer speedups have been ob-
served at Midtdalsbreen (Willis, 1995; Willis et al., 2012),
indicating basal motion. We introduce sliding using a lin-
ear Weertman sliding formulation (Weertman, 1964), which
for the SIA means basal velocities ub are proportional to the
basal shear stress τb:

ub = βτ
m
b , (3)

where β is a (tuning) basal sliding parameter. β can be set
spatially and temporally constant or be a function of temper-
ature, basal water depth, basal water pressure, bed roughness
or other factors, and m is the sliding law exponent, which
equals one for the linear sliding law we apply.

In this study, the basal sliding parameter β is assumed spa-
tially and temporally constant. We consider it speculative
to apply ad hoc variations in basal sliding without proper
validation. ISSM has capabilities to perform inversions for
basal friction based on data assimilation techniques (e.g.,
MacAyeal, 1993; Morlighem et al., 2010), but this requires
more extensive velocity data coverage than what is avail-
able for Hardangerjøkulen at present. More fundamentally,
inverted friction fields may become inaccurate on the long
timescales considered in this study.

3.1.2 Mass transport

For the vertically integrated ice flow model used in this study,
the two-dimensional continuity equation states

∂H

∂t
=−∇ · (uH)+ Ṁ, (4)

where u is the vertically averaged ice velocity (m a−1) and
Ṁ the surface mass balance rate (m ice equivalent a−1). The
basal melt rate is assumed negligible, and calving is not in-
cluded in the model. Rembesdalskåka likely terminated in
lake Rembesdalsvatnet during the LIA and the northwestern
ice cap presently terminates in water, but we expect this to
have minor effect on ice dynamics.

3.1.3 Mesh and time stepping

Following methods outlined in Hecht (2006) and Morlighem
et al. (2011), an anisotropic mesh with resolution 200–500 m
was constructed using local mesh refinement based on mod-
eled velocities for a steady-state ice cap close to observed
LIA extent. This ice cap was reached using our best-fit de-
formation and sliding parameters (Sect. 3.2.1) on a uniform
mesh and a mass balance perturbation forcing the ice cap
to advance to terminus positions close to the LIA extent.
The anisotropic mesh adds accuracy around the LIA mar-
gins. When the glacier is smaller or larger, the accuracy is
reduced (400–500 m).

The stress balance of SIA is local. Using a very high res-
olution for SIA hence increases the risk of unphysical stress
gradients and velocities due to local variations in bed topog-
raphy. We avoid this by smoothing the surface and bedrock
DEMs to 200 m. This mesh resolution also enables us to
carry out Holocene runs and our ensemble study at lower
computational cost. Tests on mesh convergence using uni-
form 150 and 200 m meshes indicate that total volume varies
by less than 5 % compared to our anisotropic 200–500 m
mesh.

We use a finite difference scheme in time, where a time
step of 0.02 years was found low enough to avoid numerical
instabilities.

3.2 Experimental setup and calibration

3.2.1 Ensemble calibration of ice deformation and
sliding parameters

To calibrate model parameters governing ice deformation
and basal sliding, we use the 1995 surface DEM as the ini-
tial condition. We run the model with constant climate forc-
ing, using our reference mass balance function (1B(t)= 0 in
Eq. 6 below), until a steady state is reached.

Since we run the model with a mass balance function
averaged over several decades, it is important that there
was no large climate–geometry imbalance for this period.
Indeed, the ice cap was in close to steady state between
the early 1960s and 1995, since surface elevation change
from 1961 to 1995 was ±10 m (Andreassen and Elvehøy,
2001).

In reality, an ice cap is never in exact steady state, but
it is still a useful concept to understand model sensitivity
(Aðalgeirsdóttir et al., 2011). To investigate model sensi-
tivity to deformation and sliding parameters, and to find a
best-fit combination for our historic runs, we run an en-
semble of 24 possible parameter combinations (Table 1),
well enclosed by values used in the literature. The flow fac-
tor A depends on ice temperature, as well on ice fabric,
impurities and possibly other factors. Without an a priori
assumption of ice temperature, we investigate values from
A= 0.95× 10−24 to 2.4× 10−24 s−1 Pa−3, roughly corre-
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sponding to Tice= 0 to −5 ◦C (Cuffey and Paterson, 2010,
p. 73). For the sliding parameter, we perform runs using
β = 4× 10−12 to 1× 10−13 m s−1 Pa−1.

The best-fit combination is obtained by minimizing the
root mean square error (RMSE) between the modeled (Hmod)
and observed (Hobs) ice thickness:

RMSE=

√√√√√ k∑
i=1
(Hmod−Hobs)

2

k
, (5)

where k is the number of vertices for which the RMSE is
calculated.

Since the outlet glaciers Midtdalsbreen and Rembes-
dalskåka are of primary interest, we use the combined
RMSE along their flowlines as the most important met-
ric (Fig. 3). As an additional check, we also calculate the
RMSE for ice thickness over the entire ice cap (not shown
here). We consider our best-fit parameter combination to be
A= 2.0315× 10−24 s−1 Pa−3 and β = 2× 10−12 m s−1 Pa−1

(Fig. 3).

3.2.2 Mass balance parameterization

A vertical reference mass balance function Bref is derived
from observed specific mass balance gradients, which exist
for 35 of the 45 years spanning 1963–2007. The averaged
net mass balance profile can be approximated by a combina-
tion of a linear function for elevations up to 1675 m a.s.l. and
a third-order polynomial at higher elevations (Fig. 2). The re-
sulting mass balance function gives an annual mass balance
for Rembesdalskåka of −0.175 m w.e. We therefore shifted
this profile by +0.175 m w.e. to obtain Bref.

Mass balance B(z, t) for any point in time is calculated by
shifting Bref by a mass balance anomaly 1B(t) at all eleva-
tions (Oerlemans, 1997a):

B(z, t)= Bref(z)+1B(t). (6)

A mass balance–altitude feedback is included in the model
by recalculating the mass balance B(z, t) at a specific point
for each time step according to the updated surface eleva-
tion. The elevation of the maximum net mass balance is not
adapted to changes in the ice cap summit elevation, as the
effect on modeled ice volume is minor (Giesen, 2009).

3.2.3 Holocene mass balance

Reconstructions (Sect. 2.2.2) suggest that Hardangerjøkulen
has been continuously present since ca. 3800 BP, with
smaller local glacier activity during the millennium before.
We therefore choose 4000 BP, with no ice cap present, as the
starting point for our simulations.

Temperature proxies indicate a positive mass balance
anomaly at 4000 BP, while precipitation reconstructions
point to more negative mass balances (Sect. 2.2.2). Com-
bined, these suggest mass balance conditions similar to
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Figure 3. Root mean square error (RMSE) between modeled and
observed present-day ice thickness along the flowlines of Midtdals-
breen and Rembesdalskåka, using an ensemble of sliding (β) and
rheology (A) parameters. Shown are parameter combinations (black
squares) and the “best-fit” parameter combination used in subse-
quent runs (white square).

present day. Accordingly, we start from 1B(t)= 0 and
thereafter linearly increase mass balance to 0.4 m w.e. over
the period 4000 to 400 BP (AD 1600). The final value of
0.4 m w.e. is chosen to produce an ice cap sized between the
present-day and LIA extent. For this simulation, we use our
best-fit deformation and sliding parameters obtained from the
calibration ensemble.

It is possible to refine or alternate this simple forcing
in several ways. However, applying such changes based on
poorly constrained past climatic and mass balance conditions
adds additional uncertainty. Our deliberately simple, linear
forcing also allows us to isolate any nonlinear, asynchronous
behavior in a clear manner.

3.2.4 Historic mass balance

Using our Holocene run ending at AD 1600 as initial condi-
tions, we aim to reproduce the history of Hardangerjøkulen
from the LIA until present day, as well as to assess model
sensitivity to the choice of deformation and sliding parame-
ters. For these purposes, we run the same parameter ensem-
ble as used in the calibration process.

Since the mass balance record from Rembesdalskåka starts
in 1963, mass balance has to be reconstructed for the period
prior to this. A plausible mass balance history is found from
AD 1600, through the LIA maximum in 1750 up to 1963,
using a dynamic calibration (Oerlemans, 1997a, 2001). This
approach is based on matching the model against the moraine
evidence and length records of the outlet glaciers Midtdals-
breen and Rembesdalskåka, while adjusting 1B(t) accord-
ingly. We use a slightly modified mass balance history as ob-
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Figure 4. Mass balance forcing for (a) mid- to late Holocene (spinup period) and (b) AD 1600–2008. Ice volume response for (c) mid- to late
Holocene and for (d) AD 1600–2008 using an ensemble of sliding and deformation parameter combinations (dark shading) and our “best-fit”
combination obtained from independent calibration. Colors represent different outlet glaciers and the whole ice cap. The LIA maximum,
as dated at Midtdalsbreen (dashed line), and its temporal uncertainties (light shading) are also shown, as well as ice volume observations
from 1961 and 1995 (black dots). For details, see text.

tained for Hardangerjøkulen by Giesen (2009), using mini-
mal tuning, since a key aim is to investigate parameter sensi-
tivity, and mass balance is arbitrary before 1963.

3.2.5 Mass balance sensitivity and hysteresis

To investigate the sensitivity of present-day Hardanger-
jøkulen to changes in mass balance, steady-state experi-
ments are performed with present-day ice cap topography as
the starting point. These experiments are performed starting
from the steady-state ice cap obtained with the best-fit pa-
rameters and no mass balance anomaly. From this state, we
perturb the mass balance by anomalies between −0.5 and
+0.5 m w.e. and run the model to a new equilibrium.

To investigate the role of the mass balance–altitude feed-
back in the ice cap response, we perform additional exper-
iments excluding this feedback by keeping the spatial mass
balance field fixed in time to the present-day surface topog-
raphy.

Finally, we investigate dependence on initial conditions
(hysteresis) by running experiments using ice-free initial
conditions, with the mass balance–altitude feedback in-
cluded.

4 Results

4.1 Mid- to late Holocene evolution of
Hardangerjøkulen

Using a linear mass balance increase from 0 m w.e. at
4000 BP to 0.4 m w.e. at AD 1600 (Fig. 4a), we find an ice
volume evolution for Hardangerjøkulen during the mid- to
late Holocene that is far from linear and different between
outlet glaciers (Fig. 4c). Starting from ice-free conditions, ice
cap volume increases in a step-wise manner, with Hardan-
gerjøkulen tripling its volume over a period of 1000 years
(ca. 2300–1300 BP), before stabilizing at the end of the pe-
riod.

Simulated snapshot thickness maps reveal patterns of ice
cap growth (Fig. 5). Initially, ice grows on high bedrock
ridges above the ELA (Fig. 5a, also see Fig. 1). During the
period of linearly increasing ice volume (4000–3800 BP),
Rembesdalskåka and Midtdalsbreen advance at similar rates.
At this stage, Rembesdalskåka occupies an area with a gently
sloping and partly overdeepened bed (Fig. 6).

After passing the lower edge of this overdeepening,
Rembesdalskåka advances ∼ 3.5 km in 400 years (2300–
1900 BP), corresponding to a length increase of 60 %
(Fig. 6). In contrast, Midtdalsbreen is already at an advanced
position in 2300 BP and changes only modestly during this
period.

Ice volume grows rapidly from 2300 to 1900 BP, but the
advance and thickening of Rembesdalskåka alone cannot ex-
plain this ice volume increase. Rather, the bulk of Hardanger-
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Figure 5. Modeled ice thickness at (a) 3800, (b) 2300, (c) 1900 and
1300 BP using our “best-fit” model parameters obtained from in-
dependent calibration. Shown are also ice cap extent in AD 1995
(black thick line) and corresponding drainage basins for outlet
glaciers Rembesdalskåka (SW) and Midtdalsbreen (NE; black thin
lines).

jøkulen’s volume increase during this period is due to ice cap
growth in the east and southeast, where deep bedrock basins
are filled with ice up to 400 m thick (Fig. 5d, see also Fig. 1).

We tested alternative mass balance forcings (faster rate of
linear increase and constant mass balance equal to the final
value), and we found the spatial pattern of ice cap growth to
be robust.

At the end of the spinup period (ca. 1300–400 BP), out-
let glaciers stabilize their frontal positions and ice volume
increase flattens out.

4.2 Hardangerjøkulen since the Little Ice Age

4.2.1 Parameter ensemble

From AD 1600, we continue the Holocene run using our en-
semble of sliding and deformation parameter combinations,
for one specific mass balance history. The ensemble mod-
eled ice volumes at the LIA maximum (AD 1750) range from
ca. 12.7 to 17.4 km3 and vary between 6.9 and 13.4 km3 for
the present day (AD 2008; Fig. 4d). Parameter combinations
including rate factors A(T =−1 ◦C) all give results ±10 %
from the observed ice volumes in 1961 and 1995. Using en-
hanced sliding and stiffer ice, or vice versa, it is possible to
get close to the observed ice volume also for other rate fac-
tors. However, only using ice volume for validation is not
sufficient. A simulated ice volume close to observations does
not imply accurate ice extent and surface topography. The
∼ 100 m spread in estimated surface elevation for the ice cap
interior in 1995 (Fig. 7) illustrates the impact of parameter
uncertainty on the dynamics and hence ice cap hypsometry.

4.2.2 Simulation using best-fit parameters

The LIA maximum ice volume using the best-fit parameter
combination is modeled to 14.8 km3 (Fig. 4d). It is not pos-
sible to obtain correspondence to observed lengths for both
outlet glaciers simultaneously, not even by altering the dy-
namical parameters (Fig. 7). The mass balance history giv-
ing optimal results for Midtdalsbreen was chosen since its
LIA maximum extent has been dated to AD 1750, while no
dates exist for Rembesdalskåka. In addition, bed topography
is more accurate for Midtdalsbreen. Using this setup, the LIA
maximum length agrees reasonably well with moraine evi-
dence, whereas Rembesdalskåka is too short (Fig. 8). Consis-
tent with the results for Midtdalsbreen and Rembesdalskåka,
the lengths of the southwestern outlet glaciers at the LIA
maximum are underestimated in the model (Fig. 9a), while
the extent of the northeastern outlet glaciers agrees well with
moraine evidence.

During the early 1900s, outlet glacier lengths are too short
(Figs. 8 and 9b), but the difference for Midtdalsbreen is only
slightly larger than the model resolution (200 m). The ice cap
margin after 1960 is reproduced with a high degree of detail
(Fig. 9c and d). Most, but not all, discrepancies are close to
the model resolution. One exception is the too small north-
western ice cap. However, ice thickness in the missing area
is small (< 50 m), so this mismatch contributes little in terms
of total ice volume.

The closest match with observed ice volume in 1961
and 1995 (Fig. 4d) within our ensemble is by the best-fit
parameter combination obtained from calibration (Fig. 3).
Modeled and observed ice volume for these years differ by
0.10 and 0.22 km3, respectively, or 1.1 and 2.3 % of total ob-
served ice volume, respectively. Modeled thickness in 1995
is generally in good agreement with the data, though the ice
cap interior is somewhat too thin and the thickness along the
eastern margin is overestimated (Fig. 9e).

The simulated continuous ice volume history of Hardan-
gerjøkulen from 4000 BP through the LIA until today, in-
cluding our ensemble from AD 1600 onwards, is shown in its
entirety in Fig. 4c and d. The simulations show that Hardan-
gerjøkulen has lost one-third of its volume between 1750 and
the present day.

4.3 Mass balance sensitivity and hysteresis

We find that Hardangerjøkulen at present is exceptionally
sensitive to mass balance changes (Figs. 10 and 11a). In par-
ticular, the ice cap is bound to disappear almost entirely for
mass balance anomalies of −0.2 m w.e. or lower. Our pa-
rameter ensemble suggests a disappearance for anomalies
between −0.5 and −0.1 m w.e., though this range is likely
smaller as explained in Sect. 4.2.1. Our simulations show a
close to linear relationship between positive mass balance
perturbations and ice volume response (Fig. 10), while the

www.the-cryosphere.net/11/281/2017/ The Cryosphere, 11, 281–302, 2017



290 H. Åkesson et al.: Simulating the evolution of Hardangerjøkulen ice cap

ice cap melts away partly or completely for the negative
anomalies.

Further experiments show that the mass balance–altitude
feedback is vital in explaining Hardangerjøkulen’s high sen-
sitivity to climate change. Without the feedback, the ice cap
responds close to linearly to mass balance perturbations and
thus is far less sensitive to climate change (Fig. 11b). For
example, half of present-day ice volume (4.9 km3) is still
present for a mass balance anomaly of −0.5 m w.e., while
with +0.5 m w.e., ice volume increases by ∼ 35 %. In stark
contrast, when including the feedback, the ice cap disappears
completely for the corresponding negative anomaly, and ice
volume almost doubles (+92 %) for the positive anomaly
(Fig. 11a).

Starting from ice-free conditions and including the mass
balance–altitude feedback, we find that the Hardanger-
jøkulen’s climatic response depends on the ice cap’s initial
state. For mass balance anomalies close to our reference mass
balance for 1963–2007, between−0.2 and+0.1 m w.e., large
differences occur between ice volumes reached from present-
day and ice-free conditions (Fig. 10). When starting from a
situation without ice, present-day mass balance conditions
produce an ice cap that has only 20 % of the volume of to-
day’s ice cap. In addition to Hardangerjøkulen being bound
to disappear almost completely for a slight decrease in the
mass balance, this result implies that a positive mass balance
anomaly is needed to regrow the ice cap to its present-day
extent, once it has disappeared.

4.4 Volume–area phasing and scaling

Our Holocene simulations show that the ice volume evolu-
tion for three of the outlet glaciers (Rembesdalskåka, Midt-
dalsbreen, Blåisen) is asynchronous (Fig. 12). Midtdals-
breen’s ice volume increases linearly over time, while Rem-
besdalskåka and Blåisen have distinct jumps in ice volume,
related to their bed topography. The importance of bedrock
troughs and overdeepenings is further illustrated by Hardan-
gerjøkulen’s nonlinear volume increase ca. 2300–1300 BP, a
period when volume increases faster than area (Fig. 12). Dur-
ing this period, ice is thickening rather than expanding hor-
izontally, which can largely be explained by ice growth in
subglacial valleys in the eastern and southeastern parts of the
ice cap (Fig. 1). These bed depressions fill up quickly be-
cause ice flow converges into them from surrounding high
bedrock ridges, and the mass balance–altitude feedback am-
plifies the ice thickening.

We compare our steady-state mass balance perturbation
experiments (Sect. 4.3) with volume–area scaling relations
for steady-state ice caps from the literature (Fig. 13a) of the
form V = cAγ (Bahr et al., 1997). For a consistent com-
parison, we group our perturbation experiments into those
which produce a fully developed ice cap and those where ice
is mainly present on high ridges and thus cannot be classi-
fied as a glacier or ice cap. We find that ice cap scaling re-

lations from the literature overestimate the ice volume of the
full-grown ice cap. Both the exponent and the scaling factor
found for Hardangerjøkulen (γ = 1.3738 and c= 0.0227) are
closer to literature values for valley glaciers (e.g Bahr et al.,
2015).

During the first half of the Holocene simulation, a full ice
cap does not develop, and volumes are up to 60 % smaller
than ice volumes predicted from the volume–area relation
derived from our steady-state experiments (Fig. 13b). Ap-
proaching the LIA and up to today, Hardangerjøkulen has a
more developed shape, and our steady-state-derived volume–
area relation fits well with simulated volumes. We discuss
these results and their implications in Sect. 5.5.

5 Discussion

5.1 Sensitivity to sliding and deformation parameters

Running our parameter calibration ensemble, we aim to min-
imize the RMSE between observed and modeled present-day
surface topography. Several parameter combinations give
similar RMSEs (Fig. 3). Since both the rate factor (A) and
sliding parameter (β) depend on driving stress (Flowers et al.,
2008; Zekollari et al., 2013), one can keep the same sur-
face velocities by reducing one parameter and increasing the
other. Hence it is challenging to pick a unique combination
without more empirical knowledge about their relative im-
portance (Le Meur and Vincent, 2003; Aðalgeirsdóttir et al.,
2011; Zekollari et al., 2013). This underlines the motivation
behind keeping our ensemble after the calibration. A com-
parison with an ice velocity map, which is not available for
Hardangerjøkulen, would more strongly constrain A and β.

Notwithstanding data deficiencies, a notable finding is that
the impact of A on ice volume is relatively small at calibra-
tion (Fig. 3) but large during our transient simulation over
several centuries (Fig. 4d). This disparity suggests that small
differences in model rheology at initialization can propa-
gate significantly with time. This time dependency has im-
plications for other model studies of long-term dynamics of
glaciers and ice caps. With growing availability of data, such
studies may consider a “dynamic” or “transient” calibration
(e.g., Oerlemans, 1997a; Davies et al., 2014; Goldberg et al.,
2015), as opposed to a “snapshot” calibration. The “tran-
sient” method uses several sets of observations to infer model
parameters, ideally at dynamically and climatically different
states.

During the years following AD 1600, when including the
ensemble of dynamical parameters, the ice cap response is
a combined effect of climate forcing and adjustment to new
parameter values. The period AD 1600–1710 can be viewed
as a short spinup phase for the historic simulation, where
the mass balance is kept constant at the end value of the
Holocene simulation (1B(t)= 0.4 m w.e.).
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Figure 6. Modeled surfaces from 4000 BP to AD 1600, starting with no ice cap, shown every 50 years from older (dark blue) to younger
(yellow). BP ages are relative to AD 2008. Note that the top of Rembesdalskåka (Hardangerjøkulen’s summit) does not coincide with the top
of Midtdalsbreen’s flowline (see Fig. 9d).

Figure 7. Modeled surfaces for AD 1750 (light green) and 1995 (light orange) for Rembesdalskåka and Midtdalsbreen, using an ensemble
of different dynamical parameter combinations. Modeled surface using our “best-fit” parameter combination is also shown for 1750 (green)
and 1995 (orange), as well as observed surface in 1995 (dashed orange). Outlet front positions as known from dated (Midtdalsbreen) and
assumed contemporary (i.e., not dated; Rembesdalskåka) terminal moraines are indicated with triangles. Note that the top of Rembesdalskåka
(Hardangerjøkulen’s summit) does not coincide with the top of Midtdalsbreen’s flowline (Fig. 9e).

For the historic run, the ensemble spread in surface eleva-
tion is larger in the vicinity of the ELA than at the margins
(Fig. 7). Recall that the continuity equation (Eq. 4) requires
that thickness change occurs ( ∂H

∂t
6= 0) when ice flow and

mass balance are not balanced (∇ · (ūH ) 6= Ṁ). Therefore,
softer ice or higher sliding cause ice thickness to decrease,
meaning ice spends less time in the accumulation zone. Sim-

ilarly, faster flow downstream of the ELA also requires thin-
ning. The insensitivity of the frontal positions is likely due
to high ablation near the margins overwhelming other effects
and, for 1995, also frontal positions pinned by bedrock to-
pography.

Flowers et al. (2008) simulated Holocene be-
havior of the Langjökull ice cap on Iceland using
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Figure 8. Modeled and observed length of outlet glaciers (a) Rem-
besdalskåka and (b) Midtdalsbreen. Temporal uncertainty for 1750
is indicated based on a 10 % age error (Innes, 1986) on the dated
moraine at Midtdalsbreen (Andersen and Sollid, 1971) and assum-
ing that the Rembesdalskåka moraine is contemporary. Uncertain-
ties in measured lengths in the 1900s and 2000s are smaller than the
marker size.

β = 2.5× 10−4 m a−1 Pa−1, which is within our ensem-
ble range. Somewhat in contrast to this study, they noted
a low sensitivity to β. However, seasonal speedups are
absent at Langjökull while they have been observed at
Hardangerjøkulen (Willis, 1995; Willis et al., 2012), which
probably explains the differing sensitivities.

In line with our study, Hubbard et al. (2006) obtained a
shallow, dynamic Icelandic ice sheet at the Last Glacial Max-
imum, associated with high sliding. Similarly, Golledge et al.
(2008) obtained a thin, more extensive Younger Dryas ice
sheet in Scotland with increased sliding. As also explained
above from a theoretical perspective (mass continuity), a
shallow geometry is associated with high sliding.

A future expansion of this work would be a multiple re-
gression of the dynamical parameters for Hardangerjøkulen
and its outlet glaciers. This could disentangle whether their
importance changes over time, for example depending on
mass balance regime or whether the glacier is retreating or
advancing. However, the available (velocity) data are not suf-
ficient to constrain the dynamic parameters to a narrower
range, and thus more data would be needed to make such an
analysis insightful. Better knowledge of the bed properties
at Hardangerjøkulen by means of radar, seismic or borehole
studies, along with modeling of the subglacial drainage sys-
tem, would also be steps toward understanding the (transient)
behavior of basal slipperiness.

Figure 9. Modeled ice thickness of Hardangerjøkulen in
(a) AD 1750, (b) 1928, (c) 1961 and (d) 1995. Shown is also
the difference between modeled and observed surface in 1995 (e),
where positive (negative) values indicate that the model overesti-
mates (underestimates) surface elevation. Observed ice cap extents
(Andersen and Sollid, 1971; Sollid and Bjørkenes, 1978; A. Nesje,
personal communication, 2014; H. Elvehøy, personal communica-
tion, 2014; Cryoclim.net/NVE) for corresponding years are shown
where available. For 1750, assumed LIA extent from geomorpho-
logical evidence (dashed line) and dated LIA extent (solid line) is
shown. For 1928/1934, the modeled thickness displayed is for 1928,
though the observed front shown for Mitdalsbreen is from 1934.
Drainage basins and flowlines of Rembesdalskåka and Midtdals-
breen are shown for 1995.

5.2 Mass balance parameterization

We deliberately chose to use a simple mass balance formu-
lation to focus on first-order ice dynamical responses to spa-
tially homogeneous changes in the forcing. The evolution of
Hardangerjøkulen through the 20th century has been simu-
lated by Giesen (2009) using the simple mass balance profile
used here, as well as with a spatially distributed mass and
energy balance model (Giesen and Oerlemans, 2010). Differ-
ences in ice volume and outlet glacier lengths produced with
the two mass balance configurations were present, but small,
justifying the use of the simple mass balance profile. In this
section, we discuss some of the results presented in Giesen
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Figure 10. Steady-state ice volumes reached using step perturba-
tions of the 1963–2007 mass balance, using an ensemble of dynam-
ical parameter combinations, starting from the present-day ice cap
and ice-free conditions.

(2009) and Giesen and Oerlemans (2010) that are relevant
for our study.

Similar to the present study, Giesen and Oerlemans (2010)
were not able to match both the modeled lengths of Rem-
besdalskåka and Midtdalsbreen with modern observations.
Since they used a sophisticated mass balance model includ-
ing an albedo scheme, a spatial precipitation gradient, and
aspect and shading effects on insolation, this suggests that
the mismatch should not be attributed to the mass balance
forcing but rather to other factors.

The two single years (2001–2002; Krantz, 2002) with
mass balance measurements on Midtdalsbreen are not
enough to systematically assess differences in the mass
balance regimes of Rembesdalskåka and Midtdalsbreen.
Nonetheless, differing mass balance regimes were suggested
based on surface elevation changes from 1961 to 1995 (An-
dreassen and Elvehøy, 2001) and also served as an explana-
tion for differing glacier reconstructions between the south-
western and northeastern margins of the ice cap (Dahl and
Nesje, 1994; Nesje et al., 1994). Coupled glacier and pre-
cipitation reconstructions based on multiproxy approaches
on lacustrine sediments (e.g., Vasskog et al., 2012) could
give more insight into differing continentality of the outlet
glaciers of Hardangerjøkulen. Snow and mass balance field
studies covering the entire ice cap would also be valuable to
better understand the spatial mass balance variability.

Apart from spatial variations in the mass balance profile,
temporal changes in climate or ice cap geometry may affect
the mass balance function. For example, solar insolation pat-
terns may change with strongly altered ice cap geometry, by
shading effects of valley walls. However, Hardangerjøkulen
has a gently sloping surface and is not surrounded by high
mountains. Therefore, topographic effects on the insolation
result in small spatial variations of the mass balance between
−0.1 and +0.1 m w.e. for the vast majority of the ice cap,

and only two outlet glaciers oriented south show larger de-
viations locally. Even in a considerably warmer climate with
a smaller ice cap, with continuously updated topographic ef-
fects on solar radiation, the mass balance profile with eleva-
tion remained close to the present-day value. Furthermore,
solar irradiance at 4000 BP, when we start our simulation,
was at most 5 % larger in the summer months than today
(Giesen, 2009) and is therefore expected to have a minor
effect on mass balance. In addition, Giesen and Oerlemans
(2010) show that lowering the ice albedo from 0.35 to 0.20
under a realistic 21st century scenario only leads to a 5 %
larger volume decrease of the ice cap. We conclude that us-
ing a mass balance profile only dependent on elevation is a
good approximation for Hardangerjøkulen, even in a differ-
ent climate with a smaller or larger ice cap.

It is not clear why observed mass balance decreases at
the uppermost elevations (Fig. 2), but likely explanations are
snow redistribution by wind or orographic precipitation ef-
fects. Snow erosion and redeposition may be parameterized
based on surface curvature, which is a good indicator of re-
gions with wind-induced snow redistribution (Blöschl et al.,
1991; Huss et al., 2008). Giesen (2009) tested a surface-
curvature approach for Hardangerjøkulen, but the plateau
was too flat for snow redistribution to occur in the model.
An orographic precipitation model has not yet been applied
to Hardangerjøkulen and is outside the scope of our study.

Glaciological measurements of mass balance have inher-
ent uncertainties and biases, related to instrumentation, sur-
vey practices and techniques (Cogley et al., 2011). An-
dreassen et al. (2016) performed a reanalysis of glaciological
and geodetic mass balance for Norwegian glaciers, includ-
ing Rembesdalskåka. For the period 1995–2010, they found
a more negative geodetic mass balance (−0.45 m w.e.) than
the glaciological one used in this study. We performed an ad-
ditional simulation with this more negative mass balance for
the final years of our simulation (1995–2008) and found that
the effect on ice volume is ca. 0.5 km3, or 5.3 % of modeled
ice volume in year 2008.

5.3 Mass balance sensitivity and hysteresis

Hardangerjøkulen is found to be particularly sensitive to
mass balance changes: the ice cap disappears completely for
the −0.5 m w.e. anomaly forcing and almost doubles in vol-
ume for +0.5 m w.e. Similar experiments for Nigardsbreen,
southwestern Norway (Oerlemans, 1997a), and Franz Josef
Glacier, southwestern New Zealand (Oerlemans, 1997b),
show much smaller responses (∼ 20–25 %). Our results are
consistent with those of Giesen (2009), who also used an SIA
model (Van Den Berg et al., 2008), but with different imple-
mentation of dynamical parameters and numerical methods.

Hardangerjøkulen’s high sensitivity can be explained by
its hypsometry and surface topography. Rivera and Casassa
(1999) attributed differing responses of three Patagonian
glaciers to contrasting hypsometries and thereby sensitivity
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Figure 11. Ice volume evolution for selected mass balance perturbations (−0.5 to 0.5 m w.e.) relative to the mean mass balance 1963–2007,
using our best-fit dynamical parameter combination, for (a) with and (b) without a mass balance–altitude feedback. A mass balance anomaly
of −0.2 m w.e. is added for greater detail of Hardangerjøkulen’s disappearance.
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Figure 12. Simulated ice volume and area evolution for (a) Hardangerjøkulen, and the outlet glaciers (b) Rembesdalskåka, (c) Midtdalsbreen,
and (d) Blåisen, from 4000 to 400 BP (AD 1600). Quantities are non-dimensionalized relative to final volume and area in year AD 1600.

to ELA change. Nesje et al. (2008a) noted that the difference
between Hardangerjøkulen’s ELA and maximum elevation is
particularly small (∼ 180 m) compared to other glaciers and
ice caps in Norway. Furthermore, the ice cap is relatively
flat with little area distribution in altitude. A comparison
with Franz Josef Glacier, New Zealand (Woo and Fitzhar-
ris, 1992), Nigardsbreen, Norway (Oerlemans, 1997a), and
Vatnajökull, Iceland (Aðalgeirsdóttir et al., 2003), confirms
that Hardangerjøkulen has the most extreme hypsometry
(Fig. 14a). Furthermore, the present ELA is located close to
the altitudes where area is large, resulting in an unusually
vulnerable ice cap. For example, an ELA increase of 100 m at
Hardangerjøkulen is equivalent to a 16.9 % decrease in area.
Corresponding values for Nigardsbreen (9.9 %), Franz Josef

Glacier (1.5 %) and Vatnajökull (6.1 %) are much smaller,
confirming this explanation (Fig. 14b).

The high sensitivity to mass balance changes found for
Hardangerjøkulen supports abrupt changes inferred from
lake sediment records for the Holocene for both the northern
and southern side of the ice cap (Dahl and Nesje, 1994; Nesje
et al., 1994). One example is the so-called “Finse event”,
when an advance to a maximum extent beyond that of present
day of the northern Blåisen outlet glacier∼ 8300 BP was fol-
lowed by a complete disappearance of this glacier within
less than a century. Our results show that for a mass bal-
ance anomaly of −0.5 m w.e., the present-day ice cap dis-
appears in ∼ 300 years. Depending on the ice cap volume at
the Finse event, we find that an anomaly between −2.0 and
2.4 m w.e. melts away Hardangerjøkulen within a century.
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Figure 13. (a) Logarithmic values of volume and area for steady-state experiments using mass balance anomalies within −0.5 to
+0.5 m w.e. relative to the AD 1963–2007 reference mass balance. Both steady states reached from the present-day ice cap and from ice-free
conditions are shown. Steady states are grouped into two cases, depending on whether an ice cap has developed or ice is only present on high
ridges. Commonly used volume–area relations from the literature are also shown (Bahr et al., 1997; Radić and Hock, 2010; Grinsted, 2013;
Laumann and Nesje, 2017). (b) Volume and area combinations for our simulation from 4000 BP to AD 2008, along with the volume–area
relation derived from simulated developed steady-state ice caps in (a).

Nonetheless, the advanced ice cap at the Finse event was
likely not fully grown and in a steady state, so an anomaly
of ∼ 1.5 m w.e. is more likely.

Given a mass balance sensitivity of around −0.9 m w.e.
K−1 (Giesen and Oerlemans, 2010) and no change in pre-
cipitation, the air temperature increase responsible for the
ice cap disappearance after the Finse event must have been
at least 1.5 K. Reconstructed summer temperature after the
Finse event suggest a sharp increase of 1.0–1.2 K (Dahl and
Nesje, 1996). A 10 % precipitation decrease would compen-
sate for this difference, since the sensitivity to precipitation
for Hardangerjøkulen is around+0.3 m w.e. K−1 (Giesen and
Oerlemans, 2010). Despite uncertainties in the reconstruc-
tion and model simulations, it is encouraging that both give
consistent results, suggesting that ice flow models coupled
with reconstructions may be used to constrain past climate
conditions.

We can also view our results on mass balance sensitivity
in light of future climate change. The mean mass balance
in the last decade was −0.3 m w.e. Since Hardangerjøkulen
was in approximate balance over the preceding decades, this
decrease primarily reflects changes in meteorological condi-
tions, and not dynamical adjustments. With the mass balance
of the last decade, our experiments suggest that Hardanger-
jøkulen disappears within 750 years (Fig. 11). However, fu-
ture projections indicate further warming for southern Nor-
way. Giesen and Oerlemans (2010) imposed future climate
scenarios on a surface energy balance mass balance model

coupled to an SIA model, suggesting that Hardangerjøkulen
will vanish almost completely before 2100. Similar conclu-
sions have been reached for glaciers in Iceland (Aðalgeirs-
dóttir et al., 2006, 2011; Guðmundsson et al., 2009), French
Alps (Le Meur et al., 2007), Swiss Alps (Jouvet et al., 2011)
and Canadian Rocky Mountains (Clarke et al., 2015). Given
the aforementioned temperature and precipitation sensitiv-
ities for Hardangerjøkulen, our estimate of −2.2 m w.e. to
remove the present-day ice cap in 100 years translates to a
temperature increase of ∼ 2.7 ◦C, given a 10 % increase in
precipitation. This is close to future projections for southern
Norway (Hansen-Bauer et al., 2015).

Hardangerjøkulen’s strong hysteresis highlights the im-
portance of accurately representing the initial state in tran-
sient simulations of small ice caps, as previously suggested
for ice sheets (e.g Aschwanden et al., 2013; Aðalgeirsdót-
tir et al., 2014). Starting from ice-free conditions, Hardan-
gerjøkulen grows to only 20 % of its present-day volume
under a modern climate. This is in stark contrast to the
Juneau Icefield in Alaska, an ice field in a similar climatic
setting, which in model simulations regrows close to mod-
ern ice volume under present-day mass balance conditions
(Ziemen et al., 2016). The authors attribute this insensitivity
to initial conditions to the complex topography of the Juneau
Icefield, with numerous outlet glaciers able to retreat up to
high altitudes where positive mass balance areas persist even
under future warming scenarios. This behavior is not ob-
served at Yakutat Icefield, a low-lying maritime ice field in
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Figure 14. (a) Hypsometry of present-day Hardangerjøkulen
(Giesen and Oerlemans, 2010) and Nigardsbreen, Norway (Oer-
lemans, 1997a), Franz Josef Glacier, New Zealand (Woo and
Fitzharris, 1992), and Vatnajökull, Iceland (Aðalgeirsdóttir et al.,
2003). Respective ELAs are indicated with dashed lines. Areas are
weighted by the total area, and altitude bins are 25 m. (b) Effect of
a step change in ELA on area for respective glacier.

southeast Alaska (Trüssel et al., 2015), which cannot be sus-
tained under present-day climate conditions. Its topography
is relatively flat, comparable to the one of Hardangerjøkulen,
which might explain its high sensitivity under modern cli-
mate scenarios. Similarly, Gilbert et al. (2016) suggested that
Barnes Ice Cap, Baffin Island, Canada, is not sustainable un-
der present mass balance conditions. While they did not per-
form regrowth experiments, their findings of the Barnes Ice
Cap being a remnant of the Laurentide Ice Sheet suggest a
hysteresis similar as we show for Hardangerjøkulen.

5.4 Holocene to LIA buildup

In the early part of the modeled period (ca. 4000–3800 BP),
ice grows preferentially on high bed topography, and Midt-
dalsbreen and Blåisen start to develop earlier than Rembes-
dalskåka (Fig. 5, also see Fig. 1). While the model resolution
here is coarse (300–500 m), we expect that ice dynamics at
this stage plays a minor role, since the ice present is split up
into several small separate glaciers (< 2 km long, < 100 m
thick). Instead, the initial ice growth at high bed ridges is due
to buildup of ice above the present-day ELA, which is used
as initial mass balance forcing.

The actual rate of advance may differ from what is mod-
eled here because the SIA has limitations in the steep ter-
rain (Le Meur et al., 2004) where Rembesdalskåka termi-
nates during the period of fast ice volume increase (ca. 3800–
2300 BP, Fig. 4c). However, the effects of ice flow mechanics
are likely small compared to those of the mass balance on the
long timescales considered here.

During the period of modeled rapid ice cap growth
(ca. 2300–1300 BP), reconstructed precipitation in western
Norway is slightly lower than the general increasing mass
balance trend applied here (Dahl and Nesje, 1996; Bjune
et al., 2005). At the same time, glacier reconstructions
from southern Hardangerjøkulen indicate a slight decrease in
glacier size (Nesje et al., 1994). Unfortunately, there is to our
knowledge no geomorphological or other evidence that can
be used as tie points for modeled ice cap extent or volume
during this period.

Our simulated preferential ice cap growth on the northern
and western side, illustrated in Fig. 5b at 2300 BP, is in line
with reconstructions showing an early glacierization of the
north (Dahl and Nesje, 1994) versus the south (Nesje et al.,
1994).

We are aware that bed topography for Hardangerjøkulen
is uncertain in places, though less so for Midtdalsbreen and
Rembesdalskåka, which are of prime interest. Moreover,
the proglacial lake in front of Rembesdalskåka may have
modulated LIA frontal behavior, as suggested for Icelandic
glaciers (Hannesdóttir et al., 2015). However, we expect this
effect to be minor compared to other model uncertainties.

Further data for model validation are required to add more
detail to our modeled history of Hardangerjøkulen. However,
given the limited knowledge about ice cap activity between
the ice-free conditions at 4000 BP and the LIA maximum
around AD 1750, we consider our continuous model simula-
tion to be a good first estimate of Hardangerjøkulen’s growth
from inception to its maximum extent during the LIA.

Moreover, we have provided a plausible ice cap history
over several thousand years as the starting point for our sim-
ulations from the LIA until today, in contrast to several pre-
vious studies (e.g., Giesen and Oerlemans, 2010; Aðalgeirs-
dóttir et al., 2011; Zekollari et al., 2014) that reach desired
initial LIA conditions by perturbing a present-day ice cap.

The Cryosphere, 11, 281–302, 2017 www.the-cryosphere.net/11/281/2017/



H. Åkesson et al.: Simulating the evolution of Hardangerjøkulen ice cap 297

5.5 Nonlinearity, asymmetry and their implications

The initial present-day mass balance forcing (1B(t)=
0 m w.e.) at 4000 BP likely explains the rapid increase in ice
volume over the first few hundred years, since this forcing es-
sentially represents a step change in mass balance at 4000 BP.
However, this effect diminishes after a few hundred years, af-
ter which the response is due to the linear mass balance forc-
ing. 1B(t)= 0 m w.e. starting from ice-free conditions pro-
duces a steady-state ice volume of only ∼ 2 km3 (Fig. 10), a
volume exceeded at 3300 BP, so any additional ice volume
cannot be explained by the initial step change in mass bal-
ance at 4000 BP. Most importantly, the nonlinear ice volume
response between 2300 and 1300 BP is thus entirely forced
by the linear mass balance increase during this period.

Analogous to the Holocene simulations, we performed ex-
periments with a slowly decreasing mass balance over mul-
tiple millennia (from 1B(t)= 0.4 to 0 m w.e.), allowing the
ice cap to dynamically adjust, starting with the AD 1600 ice
cap state. We find that the western ice cap disappears first,
while ice in the eastern part of the ice cap is more persis-
tent. Hence, the western and northern parts of the ice cap
grow first and disappear first, whereas the eastern part grows
last and disappears last. Further, our experiments show that a
gradual (linear) climatic change results in a nonlinear change
in ice volume. This nonlinear, asynchronous growth and re-
treat illustrates that proxy records representing different parts
of an ice cap at different times may lead to substantially dif-
ferent conclusions about ice cap size through time.

Previous work has highlighted glacier hypsometry,
overdeepenings and proglacial lakes in altering glacier re-
treat to climate forcing (Kuhn et al., 1985; Jiskoot et al.,
2009; Aðalgeirsdóttir et al., 2011). Adhikari and Marshall
(2013) and Hannesdóttir et al. (2015) showed that overdeep-
ened basins loose mass by thinning rather than retreat. Here
we suggest that a similar behavior applies to an advancing
glacier. In particular, overdeepened areas delay frontal ad-
vance and lead to preferential glacier thickening. However,
note that the effect of higher order stresses, not captured by
our simplified dynamic model, may be more important for an
advancing glacier (Adhikari and Marshall, 2013).

Regarding volume–area scaling (Sect. 4.4), Bahr et al.
(2015) argue that the fundamental difference between val-
ley glaciers and ice caps, and hence the reason for differ-
ent scaling exponents (γ ), is the influence of bedrock to-
pography, specifically that ice thickness is large compared
to the relief of underlying topography. The bedrock topog-
raphy below Hardangerjøkulen consists of deep subglacial
valleys and high ridges controlling the ice flow, as also noted
by Laumann and Nesje (2017) for other Norwegian ice caps.
In fact, our simulations confirm that bed topography is vital
in controlling the growth and retreat of Hardangerjøkulen.
The relatively thin ice at the ice cap summit does not corre-
spond to the classical ice cap with the thickest ice in the cen-
ter, which explains why volume–area exponents for valley

glaciers (γ = 1.375) rather than ice caps (γ = 1.25) are found
for Hardangerjøkulen. However, the overestimation of c by
commonly used volume–area scaling relations for ice caps
is more surprising. The low c we find compared to literature
values for ice caps suggests that literature volume–area scal-
ing parameters may not be accurate for relatively small ice
caps.

Importantly, glacier reconstructions using proglacial lake
sediments are generally based on assumed changes in glacier
(erosive) area rather than volume (Hallet et al., 1996), while
we show that volume and area can become decoupled for
several centuries (Fig. 12). We also demonstrate that the
degree of volume–area coupling varies for different outlet
glaciers, implying that each outlet glacier should be con-
sidered individually. For example, a differing response to
identical climate forcing is illustrated when Midtdalsbreen
advances only modestly from 2300 to 1300 BP (Fig. 5b–
d), while Hardangerjøkulen triples its ice volume during the
same period due to ice growth elsewhere (mainly in the east,
south and southwest).

Our nonlinear response and out-of-phase volume and area
call for reassessment of some glacier and climate reconstruc-
tion methodologies. To extract a climate signal, linear as-
sumptions between ice extent (area), ice volume (mass bal-
ance), climate and their geomorphological or proxy signal
are commonly assumed in glacier reconstructions (e.g., Li-
estøl in Sissons, 1979; Bakke et al., 2005). Linearity is also
commonly assumed in simplified models used to extract
climate information from glacier variations (e.g., Harrison
et al., 2001; Oerlemans, 2005; Lüthi, 2009; Roe, 2011). How-
ever, we find that these assumptions do not hold for Hardan-
gerjøkulen and its outlet glaciers. For a growing ice cap, two
scenarios may arise for which the linear assumption between
area (proxy) and volume (climate) fails: (i) area changes
faster than volume (first few hundred years of our Holocene
simulation), meaning the interpreted signal becomes bi-
ased towards a climate favorable for glacier growth (wet-
ter/colder), or (ii) volume changes faster than area (2300–
1300 BP in our simulation), and the climate signal is missed
or underestimated because the preferential thickening is not
translated into a corresponding frontal change. We expect
that ice caps with comparable geometry in, for example, Nor-
way, Iceland, Alaska, Patagonia and peripheral Greenland
may display similar behavior.

These results highlight the need for model–data inte-
gration in paleostudies. Ice sheet modelers require glacier
records for calibration and validation and climate reconstruc-
tions for model forcing. Based on our experiments, we advise
that glacier-derived climate records are tagged with explic-
itly stated glaciological assumptions and associated uncer-
tainties. In particular, we would like to recommend future
model–data studies which directly constrain geometric con-
tributions to the glaciological uncertainties involved in sedi-
mentary glacier proxies.
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6 Conclusions

We have used a two-dimensional ice flow model with a sim-
ple mass balance parameterization to simulate the evolution
of Hardangerjøkulen ice cap since the mid-Holocene, from
ice-free conditions up to the present day. Until the LIA, the
model is forced by a linear mass balance increase based
on reconstructions of temperature and precipitation. From
the LIA onwards, an optimized mass balance history is em-
ployed, and direct mass balance measurements are used af-
ter 1963.

We used an ensemble approach to assess sensitivity to slid-
ing and ice deformation parameters during both calibration
and transient runs. We find that small differences in model
ice rheology at the calibration stage increase significantly
with time. This time dependence has implications for other
model studies of long-term dynamics of glaciers and ice caps.
Such studies would benefit from using a “transient calibra-
tion” rather than a “snapshot” approach and thereby reduce
temporal biases arising from data quality issues or a particu-
lar dynamic or climatic state.

More data in both space and time are needed to further
constrain the dynamic model parameters and mass balance
for Hardangerjøkulen.

In our simulations, Hardangerjøkulen evolves from no ice
in the mid-Holocene to its LIA maximum in different stages,
where the fastest stage (2200–1300 BP) involves a tripling of
ice volume in less than 1000 years. Notably, our linear cli-
mate forcing during this time gives a nonlinear response in
ice cap volume and area. This growth occurs in a spatially
asymmetric fashion, where Midtdalsbreen reaches its maxi-
mum first, while advances of Rembesdalskåka and the east-
ern ice cap are delayed. These different responses are caused
by local bed topography and the mass balance–altitude feed-
back.

Following the simulated Holocene growth of Hardanger-
jøkulen, we successfully reproduce the main features of the
LIA extent of the main outlet glaciers, given temporal and
spatial uncertainties in moraine evidence. In the early 1900s
the simulated glacier positions are slightly underestimated,
whereas the ice extent closely resembles the observed mar-
gins available starting from 1960, and the surface topography
fits well with the 1995 surface survey.

Hardangerjøkulen is found to be highly sensitive to mass
balance changes. A reduction by 0.2 m w.e. or more relative
to the mass balance from the last decades induces a strong
mass balance–altitude feedback and makes the ice cap disap-
pear completely. Conversely, an anomaly of +0.5 m w.e. al-
most doubles total ice volume.

Volume and area for Hardangerjøkulen and several of its
outlet glaciers vary out-of-phase for several centuries dur-
ing the Holocene. This disequilibrium varies in time and
among the outlet glaciers, showing that ice cap reconstruc-
tion methodologies carrying linear assumptions between ice
extent and volume may not hold. Based on the nonlinear,

asynchronous response we find for Hardangerjøkulen, these
paleoglaciological studies may decrease their uncertainty by
(i) quantifying the effect of bedrock topography on ice flow
and mass balance, using a numerical model, (ii) perform-
ing reconstructions on at least two outlet glaciers, preferably
with distinct dynamics and bedrock topography, and (iii) re-
porting glaciological assumptions and proxy uncertainties to
ice sheet modelers using their data.

Our experiments suggest that the present-day ice cap is in
a mass balance regime where it will not regrow once it has
disappeared. We thus find that Hardangerjøkulen displays
strong hysteresis and that the interaction between hypsome-
try and mass balance–altitude feedback controls its behavior.
By combining our modeled sensitivities with past climatic
and glacier information, we also illustrate that ice flow mod-
els can further constrain past climates and glacier states. This
highlights the need to understand the long-term history of
glaciers and ice caps and calls for further integrated model–
data studies.

7 Data availability

Data of length changes and surface mass balance can
be accessed at http://glacier.nve.no/viewer/CI/en/cc/
ClimateIndicatorInfo/2964 (Midtdalsbreen) and http:
//glacier.nve.no/viewer/CI/en/cc/ClimateIndicatorInfo/2968
(Rembesdalskåka). The model code can be freely down-
loaded from http://issm.jpl.nasa.gov. Model scripts and
other datasets can be obtained upon request from the
corresponding author.
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Radić, V. and Hock, R.: Regional and global volumes of glaciers de-
rived from statistical upscaling of glacier inventory data, J. Geo-

www.the-cryosphere.net/11/281/2017/ The Cryosphere, 11, 281–302, 2017

http://dx.doi.org/10.1191/095968399678118795
http://dx.doi.org/10.1029/2011JF002140
http://dx.doi.org/10.1177/0959683614530446
http://dx.doi.org/10.3189/172756503781830421
http://dx.doi.org/10.1016/j.crhy.2004.10.001
http://dx.doi.org/10.1016/j.epsl.2007.07.022
http://dx.doi.org/10.1029/2003JF000027
http://dx.doi.org/10.1080/03091928408248191
http://dx.doi.org/10.1029/2010GL043853
http://dx.doi.org/10.1029/2011GL048659
http://dx.doi.org/10.1016/j.quascirev.2008.12.016
http://dx.doi.org/10.1016/0033-5894(91)90092-J
http://dx.doi.org/10.1191/0959683603hl603fa
http://dx.doi.org/10.1177/095968369400400405
http://dx.doi.org/10.1007/s00382-007-0324-z
http://dx.doi.org/10.1002/joc.980
http://dx.doi.org/10.2307/1552052


302 H. Åkesson et al.: Simulating the evolution of Hardangerjøkulen ice cap

phys. Res.-Ea. Surf., 115, F01010, doi:10.1029/2009JF001373,
2010.

Raper, S. C. B. and Braithwaite, R. J.: Glacier volume response
time and its links to climate and topography based on a concep-
tual model of glacier hypsometry, The Cryosphere, 3, 183–194,
doi:10.5194/tc-3-183-2009, 2009.

Rasmussen, L., Andreassen, L., Baumann, S., and Conway, H.:
‘Little Ice Age’ precipitation in Jotunheimen, southern Norway,
Holocene, 20, 1039–1045, doi:10.1177/0959683610369510,
2010.

Reinardy, B. T., Leighton, I., and Marx, P. J.: Glacier ther-
mal regime linked to processes of annual moraine forma-
tion at Midtdalsbreen, southern Norway, Boreas, 42, 896–911,
doi:10.1111/bor.12008, 2013.

Rignot, E., Rivera, A., and Casassa, G.: Contribution of the Patag-
onia Icefields of South America to sea level rise, Science, 302,
434–437, 2003.

Rivera, A. and Casassa, G.: Volume changes on Pio XI glacier,
Patagonia: 1975–1995, Global Planet. Change, 22, 233–244,
1999.

Roe, G. H.: What do glaciers tell us about climate variability and
climate change?, J. Glaciol., 57, 567–578, 2011.

Rutt, I. C., Hagdorn, M., Hulton, N., and Payne, A.: The Glim-
mer community ice sheet model, J. Geophys. Res.-Ea. Surf., 114,
F02004, doi:10.1029/2008JF001015, 2009.

Sellevold, M. and Kloster, K.: Seismic measurements on the glacier
Hardangerjøkulen, Western Norway, Norsk Polarinslitutt Ar-
bok 1964, 87–91, 1964.

Seppä, H., Hammarlund, D., and Antonsson, K.: Low-frequency
and high-frequency changes in temperature and effective humid-
ity during the Holocene in south-central Sweden: implications
for atmospheric and oceanic forcings of climate, Clim. Dynam.,
25, 285–297, doi:10.1007/s00382-005-0024-5, 2005.

Shepherd, A., Ivins, E. R., Geruo, A., et al.: A reconciled es-
timate of ice-sheet mass balance, Science, 338, 1183–1189,
doi:10.1126/science.1228102, 2012.

Sissons, J.: The Loch Lomond Stadial in the British Isles, Nature,
280, 199–203, doi:10.1038/280199a0, 1979.

Sollid, J. L. and Bjørkenes, A.: Glacial geology of Midtdalsbreen
– Genesis of moraines at Midtdalsbreen, Geomorphological map
1 : 2500, Norsk Geografisk Tidsskrift, 32, 1978.

Sutherland, D. G.: Modern glacier characteristics as a basis
for inferring former climates with particular reference to the
Loch Lomond Stadial, Quaternary Sci. Rev., 3, 291–309,
doi:10.1016/0277-3791(84)90010-6, 1984.

Trüssel, B. L., Truffer, M., Hock, R., Motyka, R. J., Huss, M.,
and Zhang, J.: Runaway thinning of the low-elevation Yakutat
Glacier, Alaska, and its sensitivity to climate change, J. Glaciol.,
61, 65–75, 2015.

Uvo, C. B.: Analysis and regionalization of northern Euro-
pean winter precipitation based on its relationship with the
North Atlantic Oscillation, Int. J. Climatol., 23, 1185–1194,
doi:10.1002/joc.930, 2003.

Vaksdal, M.: Sammenligning av to dreneringssytemer i Midt-
dalsbreen, Hardangerjøkulen, Sør-Norge (Comparison of two
drainage systems at Midtdalsbreen, Hardangerjøkulen, South
Norway), MS thesis unpublished, Department of Geography,
University of Oslo, Oslo, Norway, 2001.

Van Den Berg, J., van de Wal, R., and Oerlemans, H.: A
mass balance model for the Eurasian Ice Sheet for the
last 120,000 years, Global Planet. Change, 61, 194–208,
doi:10.1016/j.gloplacha.2007.08.015, 2008.

Vasskog, K., Paasche, Ø., Nesje, A., Boyle, J. F., and Birks, H. J.
B.: A new approach for reconstructing glacier variability based
on lake sediments recording input from more than one glacier,
Quatern. Res., 77, 192–204, doi:10.1016/j.yqres.2011.10.001,
2012.

Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok,
R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina,
O., Steffen, K., and Zhang, T.: Observations: Cryosphere, in: Cli-
mate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change, edited by: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge Uni-
versity Press, Cambridge, UK and New York, NY, USA, 2013.

Velle, G., Brooks, S. J., Birks, H., and Willassen, E.: Chironomids
as a tool for inferring Holocene climate: an assessment based
on six sites in southern Scandinavia, Quaternary Sci. Rev., 24,
1429–1462, doi:10.1016/j.quascirev.2004.10.010, 2005a.

Velle, G., Larsen, J., Eide, W., Peglar, S. M., and Birks, H. J. B.:
Holocene environmental history and climate of Råtåsjøen, a low-
alpine lake in south-central Norway, J. Paleolimnol., 33, 129–
153, doi:10.1007/s10933-004-2689-x, 2005b.

Weertman, J.: The theory of glacier sliding, J. Glaciol., 5, 287–303,
doi:10.1007/978-1-349-15480-7_14, 1964.

Willis, I. C.: Intra-annual variations in glacier mo-
tion: a review, Prog. Phys. Geogr., 19, 61–106,
doi:10.1177/030913339501900104, 1995.

Willis, I. C., Fitzsimmons, C. D., Melvold, K., Andreassen, L. M.,
and Giesen, R. H.: Structure, morphology and water flux of a sub-
glacial drainage system, Midtdalsbreen, Norway, Hydrol. Pro-
cess., 26, 3810–3829, oi10.1002/hyp.8431, 2012.

Winkelmann, R., Martin, M., Haseloff, M., Albrecht, T., Bueler, E.,
Khroulev, C., and Levermann, A.: The Potsdam parallel ice sheet
model (PISM-PIK) – Part 1: Model description, The Cryosphere,
5, 715–726, doi:10.5194/tc-5-715-2011, 2011.

Woo, M.-K. and Fitzharris, B.: Reconstruction of mass balance vari-
ations for Franz Josef Glacier, New Zealand, 1913 to 1989, Arct.
Alp. Res., 24, 281–290, 1992.

Zekollari, H. and Huybrechts, P.: On the climate–geometry
imbalance, response time and volume–area scaling of an
alpine glacier: insights from a 3-D flow model applied to
Vadret da Morteratsch, Switzerland, Ann. Glaciol., 56, 51–62,
doi:10.3189/2015AoG70A921, 2015.

Zekollari, H., Huybrechts, P., Furst, J. J., Rybak, O., and Eisen, O.:
Calibration of a higher-order 3-D ice-flow model of the Morter-
atsch glacier complex, Engadin, Switzerland, Ann. Glaciol., 54,
343–351, doi:10.3189/2013AoG63A434, 2013.

Zekollari, H., Furst, J. J., and Huybrechts, P.: Modelling the evo-
lution of Vadret da Morteratsch, Switzerland, since the Lit-
tle Ice Age and into the future, J. Glaciol., 60, 1155–1168,
doi:10.3189/2014JoG14J053, 2014.

Ziemen, F. A., Hock, R., Aschwanden, A., Khroulev, C., Kienholz,
C., Melkonian, A., and Zhang, J.: Modeling the evolution of the
Juneau Icefield between 1971 and 2100 using the Parallel Ice
Sheet Model (PISM), J. Glaciol., 62, 199–214, 2016.

The Cryosphere, 11, 281–302, 2017 www.the-cryosphere.net/11/281/2017/

http://dx.doi.org/10.1029/2009JF001373
http://dx.doi.org/10.5194/tc-3-183-2009
http://dx.doi.org/10.1177/0959683610369510
http://dx.doi.org/10.1111/bor.12008
http://dx.doi.org/10.1029/2008JF001015
http://dx.doi.org/10.1007/s00382-005-0024-5
http://dx.doi.org/10.1126/science.1228102
http://dx.doi.org/10.1038/280199a0
http://dx.doi.org/10.1016/0277-3791(84)90010-6
http://dx.doi.org/10.1002/joc.930
http://dx.doi.org/10.1016/j.gloplacha.2007.08.015
http://dx.doi.org/10.1016/j.yqres.2011.10.001
http://dx.doi.org/10.1016/j.quascirev.2004.10.010
http://dx.doi.org/10.1007/s10933-004-2689-x
http://dx.doi.org/10.1007/978-1-349-15480-7_14
http://dx.doi.org/10.1177/030913339501900104
http://dx.doi.org/10.5194/tc-5-715-2011
http://dx.doi.org/10.3189/2015AoG70A921
http://dx.doi.org/10.3189/2013AoG63A434
http://dx.doi.org/10.3189/2014JoG14J053

	Abstract
	Introduction
	Hardangerjøkulen ice cap
	Present-day geometry
	Surface topography
	Ice thickness and bed topography

	Past geometry
	Holocene changes
	Outlet glacier changes since the Little Ice Age

	Climate
	Holocene and Little Ice Age climate
	Present climate

	Surface mass balance
	Ice dynamics
	Basal conditions
	Surface velocities


	Model description and setup
	Ice flow model
	Ice deformation and sliding
	Mass transport
	Mesh and time stepping

	Experimental setup and calibration
	Ensemble calibration of ice deformation and sliding parameters
	Mass balance parameterization
	Holocene mass balance
	Historic mass balance
	Mass balance sensitivity and hysteresis


	Results
	Mid- to late Holocene evolution of Hardangerjøkulen
	Hardangerjøkulen since the Little Ice Age
	Parameter ensemble
	Simulation using best-fit parameters

	Mass balance sensitivity and hysteresis
	Volume--area phasing and scaling

	Discussion
	Sensitivity to sliding and deformation parameters
	Mass balance parameterization
	Mass balance sensitivity and hysteresis
	Holocene to LIA buildup
	Nonlinearity, asymmetry and their implications

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

