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Abstract. In this paper, a coupled sea ice–wave model is de-
veloped and used to analyze wave-induced stress and break-
ing in sea ice for a range of wave and ice conditions. The
sea ice module is a discrete-element bonded-particle model,
in which ice is represented as cuboid “grains” floating on
the water surface that can be connected to their neighbors by
elastic joints. The joints may break if instantaneous stresses
acting on them exceed their strength. The wave module is
based on an open-source version of the Non-Hydrostatic
WAVE model (NHWAVE). The two modules are coupled
with proper boundary conditions for pressure and velocity,
exchanged at every wave model time step. In the present ver-
sion, the model operates in two dimensions (one vertical and
one horizontal) and is suitable for simulating compact ice in
which heave and pitch motion dominates over surge. In a se-
ries of simulations with varying sea ice properties and incom-
ing wavelength it is shown that wave-induced stress reaches
maximum values at a certain distance from the ice edge.
The value of maximum stress depends on both ice properties
and characteristics of incoming waves, but, crucially for ice
breaking, the location at which the maximum occurs does not
change with the incoming wavelength. Consequently, both
regular and random (Jonswap spectrum) waves break the ice
into floes with almost identical sizes. The width of the zone
of broken ice depends on ice strength and wave attenuation
rates in the ice.

1 Introduction

Interactions between sea ice and waves are a defining char-
acteristic of the marginal ice zone (MIZ), loosely defined as
a region of the sea ice cover adjacent to the ice edge and di-

rectly influenced by the neighboring open ocean. In recent
years, as the sea ice extent in polar and subpolar regions of
the Northern Hemisphere decreases and thick, multiyear ice
is replaced with thinner, weaker seasonal ice, conditions typ-
ical for MIZ (ice concentration lower than 90 %, small floe
sizes, patchy distribution of floes on the sea surface, etc.) tend
to occur over larger and larger areas. There is a growing ob-
servational and modeling evidence that wave–ice interactions
play an important role in the observed expansion of MIZ and
negative trends in sea ice extent (see, e.g., Asplin et al., 2012,
2014; Thomson and Rogers, 2014; Thomson et al., 2016).
Thin, fragmented sea ice is susceptible to further breaking
and, depending on ambient weather and oceanic conditions,
melting, which facilitates faster ice drift, a decrease in ice
concentration, and an increase in wind fetch and thus creates
more favorable conditions for wave propagation and gener-
ation, leading to still stronger fragmentation. These – and
many other – feedbacks suggest that it is crucial to include
(the effects of) wave–ice interactions in numerical ocean–sea
ice–atmosphere models in order to be able to reliably repro-
duce the observed processes and forecast future changes on
both synoptic and climate scales. Parameterizations of wave–
ice interactions for large-scale continuum models (i.e., those
in which ice is treated as a continuous mass rather than as dis-
crete particles) are crucial for further development of those
models. However, although appreciable effort has been made
in that direction in recent years (Dumont et al., 2011; Doble
and Bidlot, 2013; Squire et al., 2013; Williams et al., 2013,
2017; The WAVEWATCH III®Development Group , WW3-
DG; Bennetts et al., 2017), our understanding of many as-
pects of wave–ice interactions is still too limited to allow
formulating such parameterizations, especially those suitable
for a wide range of conditions. Strong fragmentation of the
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ice into many small floes, and highly energetic environment
due to the presence of waves make the MIZ a very difficult,
demanding location for field work. Due to their low temporal
resolution in polar regions, satellite data only provide snap-
shots of sea ice conditions, making it difficult or impossible
to infer details of processes acting on timescales compara-
ble with a typical wave period. Therefore, in spite of recent
advances in remote sensing techniques to monitor waves in
the MIZ (e.g., Ardhuin et al., 2017), the amount of obser-
vational data necessary for validation of numerical models
remains very limited. Consequently, many crucial processes
and their large-scale effects are only poorly understood. As
the overview of the relevant literature in the following para-
graphs clearly shows, one of them is sea ice breaking by
waves and the resulting floe-size distribution (FSD) – the
main subject of this paper.

Review papers by Squire et al. (1995) and Squire (2007,
2011) provide a good overview of the state-of-the-art re-
search related to wave–ice interactions. Problems studied in
this context include, but are not limited to, wave propagation,
attenuation, and scattering by various ice types, e.g., contin-
uous ice sheets, broken compact ice, (groups of) individual
ice floes, and inhomogeneities like pressure ridges, cracks,
etc.; motion of ice floes (and other floating objects, including
very large floating structures) on waves and wave-induced
floe collisions; sea ice breaking by waves. Considering rel-
atively large amounts of literature on wave propagation in
sea ice and wave-induced motion of ice floes and sheets (see,
e.g., Squire, 1983; Liu and Mollo-Christensen, 1988; Shen
and Ackley, 1991; Meylan and Squire, 1994; Meylan, 2002;
Wang and Shen, 2011; Montiel et al., 2012, 2016; Suther-
land and Rabault, 2016, and references there, as this list is by
far not complete), the number of studies on sea ice breaking
by waves is remarkably limited and – as Squire et al. (1995)
aptly put it – they are to a large degree based on “anecdo-
tal evidence”. In a series of papers published in the 1980s,
V. Squire analyzed wave propagation in continuous land-fast
ice and basic mechanisms of wave-induced ice breaking, re-
lated to the presence of secondary ice-coupled waves affect-
ing the wave envelope close to the ice edge and rapidly de-
caying away from the edge (see, e.g., Squire, 1984a, b). In
their review paper, Squire et al. (1995) describe qualitatively
the process of breaking of land-fast ice by swell waves, in
which elongated, parallel strips of ice are progressively sep-
arated from the initially continuous ice sheet. They write that
“the width of the strips, and hence the diameter of the floes
created by the process, is remarkably consistent and appears
in the sparse evidence available to be rather insensitive to
the spectral structure of the sea, but highly dependent on ice
thickness.” Consistently, their modeling results showed that
the location of maximum flexural strain in the ice relative
to the ice edge depends mainly on ice thickness rather than
wave period. Notwithstanding these conclusions, a close re-
lationship between the incoming wavelength and floe sizes
produced by breaking is usually assumed, as for example

in the above-mentioned parameterizations by Williams et al.
(2013), Bennetts et al. (2017), and others. It is worth stressing
that these models do not directly simulate the sea ice break-
ing process. Instead, they simulate the effects of breaking
by testing if the conditions are favorable for breaking (cri-
teria based on the wave height and thus strain that the ice
experiences) and, if these conditions are fulfilled, by modi-
fying the maximum floe size Lmax according to certain pre-
scribed rules. The shape of the FSD for floe sizes Lo < Lmax
is prescribed as well, so that Lmax is the only variable pa-
rameter characterizing the FSD. In other words, these models
are suitable for analyzing the consequences of wave-induced
breaking of sea ice (i.e., the influence of the evolving FSD
on ice dynamics and/or thermodynamics) given the assumed
relationships between the FSD and the wave forcing. Thus,
as with any parameterization, our understanding of the pro-
cesses involved decides upon the validity and accuracy of the
modeling results.

Since the pioneering works described above, few stud-
ies have been devoted specifically to the analysis of sea ice
breaking by waves. In a modeling study of ice motion on
waves, Meylan and Squire (1994) analyzed flexural strain
variability in ice floes of different sizes and thicknesses.
Langhorne et al. (1998) analyzed experimentally and numer-
ically the fatigue behavior of first-year sea ice subject to re-
peated bending stress and demonstrated that the time his-
tory of strain acting on the ice is crucial for predicting its
breaking. In a subsequent work, Langhorne et al. (2001) ex-
tended their earlier work to estimate lifetime of landfast ice
subject to waves with given characteristics. Based on ship
observations of ice breaking during a strong-wave event in
the Barents Sea, Collins et al. (2015) analyzed the role of
nonlinear wave processes and the resulting strong modula-
tion of wave amplitude in ice breaking, in accordance with
much earlier observations and theoretical results of Liu and
Mollo-Christensen (1988). Vaughan and Squire (2011) esti-
mated ice breaking probabilities in the Arctic sea ice in func-
tion of the distance from the ice edge based on the probability
density functions of the sea surface curvature. This approach,
employed also by Kohout and Meylan (2008), assumes a sim-
ple relationship between strain (estimated directly from the
shape of the wave profile) and stress in the ice. Finally, sea
ice breaking is included in the recent model of wave–sea ice
interactions by Montiel and Squire (2017). In simulations of
wave propagation and multiple scattering by circular ice floes
in MIZ, they used strain-based floe breaking criteria and ob-
tained approximately normal FSDs without any a priori as-
sumptions regarding their shape.

In this paper, a coupled sea ice–wave model is proposed
suitable for simulating ice–wave interactions in the time do-
main, including computation of instantaneous stresses in ice
and ice breaking. The model consists of a bonded-particle
discrete-element sea ice model, similar to that of Herman
(2016), and a wave model based on the code of the Non-
Hydrostatic WAVE (NHWAVE) model by Ma et al. (2012,
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2014). The two parts are coupled with proper boundary con-
ditions exchanged at every NHWAVE time step. The type of
a discrete-element model (DEM) used here, in which bonds
connecting grains behave as elastic “rods”, is particularly
suitable for studying sea ice–wave interactions due to oscil-
latory nature of these processes, prohibiting inelastic effects
from becoming significant (see, e.g., Fox and Squire, 1994).

Apart from providing a detailed description of the model,
the main goal of this work is, first, to analyze spatiotempo-
ral variability of wave-induced stress in ice floes with varying
thickness and sizes and, second, to analyze the time evolution
of breaking and the final breaking patterns produced by reg-
ular and irregular waves. The paper is structured as follows:
Sect. 2 contains the definitions and assumptions underlying
the model, followed by the description of the model equa-
tions and coupling between the wave and ice modules. The
results of simulations are presented in Sect. 3. Finally, Sect. 4
provides a discussion and a summary.

2 Model description

The model consists of two parts, the sea ice module and the
wave module, exchanging information at every time step.
The wave part is based on version 2.0 of the NHWAVE model
developed by Ma et al. (2012) and available at https://sites.
google.com/site/gangfma/nhwave. NHWAVE solves three-
dimensional incompressible Navier–Stokes equations in ver-
tically scaled σ coordinates (see further Sect. 2.2.1). For the
purpose of this work, NHWAVE has been extended to allow
non-free surface boundary conditions under the (floating) ice,
as described in detail further in Sect. 2.2.3. The second com-
ponent is a discrete-element bonded-particle sea ice model.
It is based on similar ideas and assumptions as the DESIgn
model by Herman (2016), with certain modifications crucial
for representing ice motion and bending on the oscillating sea
surface (in DESIgn, which is essentially two-dimensional in
the horizontal plane, these effects are treated in a very rudi-
mentary way, with a number of unrealistic assumptions).

Recently, Ma et al. (2016) and Orzech et al. (2016) imple-
mented in NHWAVE equations for floating objects and other
solid “obstacles”. Their method is based on immersed bound-
ary techniques (Mittal and Iaccarino, 2005; Ha et al., 2014),
suitable for modeling interactions between fully or partially
submerged solid bodies (fixed or moving) and the surround-
ing fluid. The algorithms of Orzech et al. (2016) are not yet
included in the publicly available version of NHWAVE (al-
though the code does contain basic treatment of fixed ob-
stacles); the present model, developed independently, shares
many features with their approach but, due to a number of as-
sumptions related to the shape and the characteristics of mo-
tion of the floating objects, it is much less general, suitable
for the specific configuration analyzed in this work. In con-
trast, the model of Orzech et al. (2016) assumes that floating
objects are rigid bodies, making it unsuitable for an analy-

sis of ice deformation and breaking, which is crucial for the
present study.

2.1 Definitions and assumptions

The model is two-dimensional in the xz plane. The waves are
unidirectional and propagate along the x axis; the z axis is di-
rected vertically upward, with z= 0 at the mean water level.
The sea ice is composed of discrete elements (called grains)
of cuboidal shape that are floating on the water surface and
may be bonded to their neighbors with elastic bonds. The
grains are rigid bodies, so that the deformation of the sea
ice is accommodated only by the bonds, which may break
during the simulation if stresses acting on them exceed their
strength.

In the present version of the model it is assumed that the
horizontal resolution of the wave model, 1x, and the sizes
of the grains are adjusted; i.e., every one of the i = 1, . . .,Nx
grid cells of the wave model is either ice-free or fully covered
with ice (Fig. 1). Let us denote a set of indices of ice-covered
cells as Ig. All grain-related variables and equations refer-
enced further are relevant for i ∈ Ig. Similarly, as bonding
is possible only between grains occupying neighboring cells,
we may define a set of bond indices Ib so that i ∈ Ib if and
only if both i ∈ Ig and (i+ 1) ∈ Ig. (To avoid renumbering
of bonds during a simulation, broken bonds are not removed
from the list, but their strength is set to zero; see Sect. 2.2.2.)

The grains have length 2li =1x, thickness hi , and mass
density ρi (Fig. 2). The model equations are formulated for
an ice “strip” with unit width in the y direction. The position
of the center of the ith grain is [xi,zi], and the deviation of its
orientation from the horizontal position due to rotation in the
xz plane is denoted with θi . The motion of the grains is de-
scribed by the translational velocity [ui,wi] and the angular
velocity ωi . For each grain, the center of mass and the cen-
ter of rotation are assumed identical, so that the off-diagonal
elements of the mass and buoyancy matrices vanish. For ro-
tation within the xz plane, the moment of inertia per unit
grain width is Ig,i = ρi

lihi
6 (h

2
i +4l2i ). The mass per unit grain

width is mi = 2ρi lihi . The assumption regarding the grains’
positions relative to the wave model cells implies that ui ≡ 0
and xi is constant, which makes the model applicable only
to compact sea ice in which the drift and oscillatory surge
motion is insignificant. Obviously, this is true in a continu-
ous, unbroken ice sheet; in broken ice at high ice concen-
tration, i.e., with densely packed floes, horizontal motion is
suppressed by collisions between neighboring floes. These
limitations will be relaxed in the future versions of the model.

All bonds are cuboid (Fig. 2) and their geometric proper-
ties are thickness hb,i and length lb,i = λ(li + li+1)= λ1x,
where λ ∈ (0,1] is a coefficient deciding whether the elastic
deformation is distributed across the grains (λ= 1) or limited
to narrow zones at the grains’ boundaries (λ→ 0). As in the
case of grains, it is assumed that the bonds have unit widths
in the y direction. Additionally, the bonds have the following
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Figure 1. Sketch of the grid organization and spatial arrangement of variables in the coupled wave–ice model, for the case of three constant-
thickness uppermost layers (Nl,ice = 3) accommodating the ice “grains” (dashed boxes). Crosses denote velocity points, while dots are
the pressure points. Locations in which the immersed-boundary forcing is applied are shown in red, while pressure points affected by the
boundary are in blue (note that, in accordance with the immersed boundary method, the model equations are solved everywhere inside the
model domain, independently of ice being present in a given grid cell or not). See text for more details.
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Figure 2. Top view (a) and side view (b) of two neighboring grains
(white rectangles) connected with a bond (blue rectangle). Rela-
tive translational and angular velocity differences relevant for the
present study are shown in red (rotation in the xz plane and ver-
tical displacement), while the remaining velocity components are
in gray. Red dots with labels “C” and “T” in panel (b) mark the
locations of maximum compressive and tensile stress, respectively,
acting on the bond when the relative rotation is directed as shown
in red.

material properties: Young’s modulus Eb,i , the ratio of the
normal to shear stiffness λns,i ; tensile strength σt,br,i ; com-
pressive strength σc,br,i ; and shear strength τbr,i . From this
set of properties, the normal and shear stiffness can be calcu-
lated: kn,i = Eb,i/lb,i and kt,i = kn,i/λns,i , respectively. Fi-
nally, the relevant moments of inertia (again, per unit bond
width) are Ib,i =

1
12h

3
b,i .

Due to the assumption of no motion along the x direction,
no contact model is necessary for neighboring grains that are
not bonded to each other. (If surge is taken into account,
repulsive contact forces between touching grains should be

implemented, e.g., the Hertzian model, as used in Herman,
2016).

In the vertical direction, the model domain is bounded by
z=−H(x) and z= η(x, t), where H(x) denotes the (time-
independent) water depth and η(x, t) denotes the instanta-
neous water surface elevation. The total instantaneous water
depth is D(x, t)=H(x)+ η(x, t).

2.2 Equations and boundary conditions

2.2.1 Wave model

As already mentioned, the wave-related part of the model is
based on NHWAVE. Its full description can be found in Ma
et al. (2012, 2014); therefore, only a summary of the most
important model features is given here. NHWAVE solves in-
compressible, nonhydrostatic Navier–Stokes equations in a
three-dimensional domain, formulated in Cartesian horizon-
tal coordinates and boundary-following vertical σ coordi-
nates, defined as

σ = (z+H)/(H + η)= (z+H)/D, (1)

for z ∈ [−H(x),η(x, t)]. In the xz space, in which the
present coupled ice–wave model is formulated, the governing
equations are the mass and momentum conservation equa-
tions:
∂D

∂t
+
∂(Du)

∂x
+
∂ω

∂σ
= 0, (2)

∂(Du)

∂t
+
∂(Du2

+
1
2gD

2)

∂x
+
∂(Duω)

∂σ
(3)

= gD
∂H

∂x
−
D

ρ

(
∂p

∂x
+
∂p

∂σ

∂σ

∂x

)
+DSτx ,

∂(Dw)

∂t
+
∂(Duw)

∂x
+
∂(Dwω)

∂σ
(4)

=−
1
ρ

∂p

∂σ
+DSτz ,
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where g denotes acceleration due to gravity, p is the dynamic
pressure, u and w are water velocity components in x and z
direction, respectively, ω is the velocity component perpen-
dicular to the σ surfaces, and Sτx and Sτz are turbulent diffu-
sion terms, assumed equal to zero in the present work. The
free surface is obtained explicitly from the vertically inte-
grated continuity Eq. (2). To close the system of Eqs. (2)–(4)
are supplemented by the Poisson equation for pressure (Ma
et al., 2012; Orzech et al., 2016).

At the bottom, z=−H , the kinematic and free-slip
boundary conditions for velocity, and the Neumann bound-
ary condition for pressure are

w =−u
∂H

∂x
, (5)

∂u

∂σ
= 0, (6)

∂p

∂σ
=−ρD

dw
dt
. (7)

Boundary conditions at the free surface, z= η, not covered
with ice are

w =
∂η

∂t
+ u

∂η

∂x
, (8)

∂u

∂σ
= 0, (9)

p = 0. (10)

In the model applications presented in this work, sponge
layers are applied at the left and right boundary, and waves
are generated inside the model domain with a so-called
internal-wavemaker technique, in which a source term is
added to the model equations at the wave generation loca-
tion, and the waves propagate out of this location in both
directions (Ma et al., 2014).

2.2.2 Sea ice model

The sea-ice-related part of the model can be formulated as a
set of the following ordinary differential equations:

dθi
dt
= ωi, i ∈ Ig, (11)

dzi
dt
= wi, i ∈ Ig, (12)

Ig,i
dωi
dt
=Mwv,i +Mb,i −Mb,i−1 (13)

+ li(Ft,i −Ft,i−1), i ∈ Ig,

mi
dwi
dt
= Fwv,i +Fz,i −Fz,i−1, i ∈ Ig, (14)

dMb,i

dt
=−kn,iIb,i(ωi −ωi+1), i ∈ Ib, (15)

dFt,i

dt
= kt,ihb,ivt,i, i ∈ Ib, (16)

dFz,i
dt
= kn,ihb,ivz,i, i ∈ Ib. (17)

Equations (11) and (12) are definitions of the angular
and translational velocities of the grains, respectively. The
angular-momentum Eq. (13) describes changes of ωi due to
moments of forces acting on the grains. Analogously, the
linear-momentum Eq. (14) describes changes of the verti-
cal velocity wi due to forces acting on the grains. The terms
on the right-hand side of Eqs. (13) and (14) can be calcu-
lated from the remaining Eqs. (15)–(17). As in all DEMs,
the bonds transmit both torques and forces. Relevant in the
present configuration are bending moments Mb,i , resulting
from the relative rotation (rolling) of the bonded grains in
the xz plane; torques liFt,i acting on the grain boundaries
due to tangential forces resulting from translational shear
displacement of the grains (with velocity vt,i); and the ver-
tical component of the sum of normal and tangential forces,
Fz,i , resulting from relative displacement of the grains (with
vertical velocity vz,i). As can be seen, in Eqs. (15)–(17)
linear relationships between displacement and force are as-
sumed, which is typical for DEM models (see Herman, 2016,
and, for a detailed algorithm for calculating the displace-
ments and forces in a fully 3-D case, Wang, 2009, and Wang
and Alonso-Marroquin, 2009). Finally, the first terms on the
right-hand side of Eqs. (13) and (14) denote the net moment
of forces and the net vertical force, respectively, from the
wave motion underneath the ice. They are calculated by inte-
grating the contribution from waves over the wetted surface
of the grains. Their detailed formulation is given further in
Sect. 2.2.3.

Note that, in a general case, although the value of Ft,i char-
acterizes the bond connecting two neighboring grains, the
torque related to this force acting on these grains would be
different if li 6= li+1. Note also that the horizontal compo-
nent of the normal and tangential forces would be relevant
only for horizontal displacements of the grains, which are
not taken into account here.

As noted earlier, all forces and moments are formulated
for a unit width of grains and bonds.

The stresses acting on bonds are calculated according to
the classical beam theory, so that

τi =
|Ft,i |

hb,i
, i ∈ Ib, (18)

σc,i =
Fn,i

hb,i
+
|Mb,i |hb,i

Ib,i
, i ∈ Ib, (19)

σt,i =−
Fn,i

hb,i
+
|Mb,i |hb,i

Ib,i
, i ∈ Ib, (20)

where Fn,i denotes the normal force (i.e., along the bond
length). The stresses are evaluated for every bond at every
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model time step. If at least one of the three stress components
exceeds the bond strength, i.e., if τi > τbr,i or σc,i > σc,br,i
or σt,i > σt,br,i , the bond breaks. In bonded-particle mod-
els this is typically achieved by instantaneously setting the
Young’s modulus, as well as the forces and moments trans-
mitted by this bond, to zero. This approach, based on an as-
sumption that breaking happens infinitely fast, is well known
to produce too-brittle behavior, unrealistic in many materials.
Some models therefore introduce a softening mechanism, en-
suring that stress in broken bonds drops gradually instead
of instantaneously (see, e.g., Lisjak and Grasselli, 2014). In
the present model, breaking is extended in time by assuming
that stresses acting on a bond that undergoes breaking drop to
zero gradually over a certain time tbr. Numerical tests showed
that tbr ∼ 0.1 s is enough to remove spurious effects associ-
ated with instantaneous breaking. The influence of tbr on the
model behavior is demonstrated in Sect. 3.3.

2.2.3 Sea ice–wave coupling

In the present model, the discretization of the model domain
in the vertical direction is modified so that a prescribed num-
ber Nl,ice out the total of Nl layers is used to accommodate
the ice (Fig. 1). That is, the uppermost Nl,ice layers have a
constant thickness equal to hf /Nl,ice, where hf denotes the
draft of the ice. The remaining Nl−Nl,ice layers are divided
uniformly from the bottom, z=−H(x) to z= η(x, t)−hf .
Thus, the thickness of the upper model layers does not vary
in time and at each time step the ice grains’ boundaries co-
incide with boundaries of the cells of the wave model. This
fact significantly simplifies the formulation of boundary con-
ditions along the horizontal and vertical ice surfaces. At the
lower surface of the ice we have

w = wi, (21)
∂u

∂σ
= 0, (22)

1
D

∂p

∂σ
=−ρ

dwi
dt
. (23)

Analogously, at the vertical ice surfaces,

u= ui, (24)
∂w

∂x
= 0, (25)

∂p

∂x
=−ρ

∂ui

∂t
. (26)

(Note that ui = 0 in the present model version.) As can be
seen, a free-slip condition is assumed for velocity compo-
nents tangential to the ice surface.

In the immersed-boundary method, the influence of the ice
on the surrounding water is taken into account by adding an
additional forcing term Fice to the momentum equations at
the second step of the two-step second-order Runge–Kutta

scheme, used in NHWAVE to numerically integrate the gov-
erning equations (Ha et al., 2014; Ma et al., 2016). By defini-
tion, Fice 6= 0 only along the boundaries of floating and sub-
merged objects (points marked with red crosses in Fig. 1).
Details of the formulation of this force can be found in Ha
et al. (2014) and in references cited there. Linear interpola-
tion of velocities close to ice boundaries is used, as recom-
mended by Fadlun et al. (2000) and Ha et al. (2014).

To close the wave–ice interaction problem, the forcing
from water to the ice has to be passed to the ice model.
This forcing can be obtained by integrating the dynamic pres-
sure p over the surface area of an submerged object. Due to
the specific geometry and assumptions described in previous
sections, the formulation of this forcing is relatively straight-
forward. As the horizontal motion of the grains is not taken
into account and the tilt of the grains is likely to remain small
(so that sinθi is close to zero and cosθi close to one), contri-
bution of pressure force and momentum acting on the verti-
cal surfaces of end grains can be omitted. Thus, the moment
Mwv,i used in (13) and the vertical component of the wave-
induced force Fwv,i in (14) are

Mwv,i =

xi+li∫
xi−li

p(l)ni × r idl, i ∈ Ig, (27)

Fwv,i = cosθi

xi+li∫
xi−li

p(l)dl, i ∈ Ig, (28)

where l denotes distance along the lower grain surface, ni =

[−sinθi,cosθi] is a unit vector normal to that surface, and r i
is a vector of length l tangential to it. Assuming linear vari-
ability of pressure between pi−1 and pi , as well as between
pi and pi+1, it is straightforward to evaluate the integrals in
Eqs. (27) and (28) to obtain

Mwv,i =
l3i

31x
(pi+1−pi−1), i = 1, . . .,Ng, (29)

Fwv,i = 2li

[
pi +

2li
81x

(pi+1− 2pi +pi−1)

]
cosθi, (30)

i = 1, . . .,Ng.

2.3 Numerical implementation

The code of the sea ice model is written as an additional mod-
ule included in NHWAVE. A simplified flowchart of the cou-
pled model is shown in Fig. 3. Due to more strict stability re-
quirements of the sea ice part of the model, it is solved with
a shorter time step 1tice = γt1twave, with γt < 1. In simula-
tions presented in this paper, γt = 1/150 was used. The time
step of the ice model is limited by the grain size used and
by mechanical ice properties, with more stiff ice (higher Eb)
requiring smaller 1tice.
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Figure 3. Simplified flowchart of the coupled wave–ice model.

3 Results

3.1 Model setup

In this section, the model is applied to a series of simula-
tions in which a single ice floe with a given thickness hi and
length Lo is moving on waves with a given open-water wave-
length Lw,0. A summary of the model setting is given in Ta-
ble 1. The water depth is constant H = 10 m, and the water
column is divided into Nl = 30 layers. The number of “ice
layers” Nl,ice depends on the ice thickness but is never lower
than 3. The horizontal resolution of the model, i.e., the cell
size of the wave model 1x and the horizontal dimensions
of the grains 2li , equals 0.5 m. Preliminary simulations with
the stand-alone NHWAVE model were performed to verify
whether 1x is sufficiently small and Nl sufficiently large to
reproduce the shortest waves considered with satisfactory ac-
curacy. The results showed that for the whole range of wave-
lengths analyzed, no significant loss of energy during prop-
agation was observed. Thus, the attenuation present in the
results described further in Sect. 3.2 and 3.3 originates in the
sea ice module due to damping in the bonds, which are not
perfectly elastic. This undoubtedly is an undesired property
of the numerical scheme used in the sea ice module; however,

Table 1. Model parameters used in the simulations in Sect. 3.

Variable Value

Constant parameters

Water depth H 10 m
Basin length 1500 m
Horizontal grid size 1x 0.5 m
Number of σ layers Nl 30
Number of “ice layers” Nl,ice max{3,3hi}
Width of sponge layers 125 m
Internal-wavemaker location 290 m
Bond length parameter λ 0.5
Normal to shear stiffness ratio λns 1.5
Young’s modulus Eb 1.0× 109 Pa
Time step ratio γt 150
Wave amplitude a 0.025 m

Variable parameters

Floe length Lo 5–500 m
Ice thickness hi 0.3–3.0 m
Open-water wavelength Lw,0 25–84 m
Bond tensile strength σt,br 1500–3000 Pa

(∞ in simulations
without breaking)

it has been shown in tests with artificially modified damping
in bonds that it does not influence the results in terms of the
floe sizes obtained; see Sect. 4 for a discussion.

It is also worth stressing that – as in all DEM models –
in simulations that are designed to reproduce the behavior
and macro-properties of any particular specimen of a brittle
material (its strength, elastic modulus, and so on), the mi-
croscopic properties of grains and bonds have to be carefully
calibrated (see, e.g., Potyondy and Cundall, 2004; Koyama
and Jing, 2007, for examples of how the coefficients of the
bond and contact models are calibrated in order to take into
account their dependence on grain size). As the results pre-
sented here are not calibrated to any real-world case, this is-
sue is not further investigated. For realistic applications of
the model, its parameters (λ, λns, Eb, σt,br, and so on) can be
adjusted to obtain desired macroscopic sea ice properties.

In the simulations described in Sect. 3.2 and 3.3, a number
of combinations of hi , Lo, and Lw,0 are considered, with the
range of values 0.3–3.0, 5–500 m, and 25–84 m, respectively.
For H = 10 m, the range of Lw,0 corresponds to wave peri-
ods between 4.04 and 9.19 s and to kH values between 2.5
and 0.75 (where k denotes the wave number). The thickness
of both grains and bonds is identical.

The simulations were performed first without ice breaking
in order to analyze the spatiotemporal variability of stress in
the ice, as described in Sect. 3.2. Subsequently, the bonds’
strength was reduced to a number of values to study ice
breaking pattern, analyzed in Sect. 3.3.
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3.2 Stress variability in continuous ice

During the motion of the modeled ice floe on waves, the
bonds undergo tensile, compressive, and shear stress re-
lated to the relative displacement and rotation of neighbor-
ing grains. In the simulations described here, the compres-
sive and tensile stresses had comparable amplitudes, whereas
the shear stress was 2–3 orders of magnitude lower. All bond
breaking events in simulations from Sect. 3.3 happened due
to tensile failure and therefore σt,i is analyzed here as the
most relevant stress component.

Figure 4 shows the vertical displacement of the ice and the
tensile stress acting on bonds in function of time and distance
from the ice edge. As can be seen in the diagrams, the ampli-
tude of stress acting on bonds increases from zero at the ice
edge (where the amplitude of zi is largest) towards a maxi-
mum value σt,max at a certain distance from the ice edge (see
the pink dot in the lower plot in Fig. 4b). Figure 5a, c show
the value of σt,max for different combinations of ice thick-
ness and floe lengths; the location of the stress maximum
(measured relative to the ice edge) is shown in Fig. 5b, d. For
a given ice thickness, the value of σt,max increases with in-
creasing floe size, as the floes’ response changes from rigid
motion (very small floes) to flexural motion (larger floes).
Up from a certain floe size, equal to between one and two
wavelengths, no further increase of σt,max is observed, i.e.,
the stress saturates to a value specific for a given ice thick-
ness. For a given floe length, the influence of ice thickness on
σt,max is less trivial: there is a certain value of hi for which
σt,max reaches the highest value, and for larger floes this max-
imum (Fig. 5a) shifts towards thicker ice. The reason for the
drop of stress in very thick ice is that a lot of wave energy is
reflected at the ice edge, leading to lower amplitudes within
the ice itself. Moreover, thick floes are more rigid, with re-
duced strain and thus lower stress levels. For very small floes,
σt,max occurs in the middle of the floe and thus its location
is independent of ice thickness; for larger floes, location of
σt,max moves further from the ice edge with increasing ice
thickness (Fig. 5d). For a given ice thickness, the location of
σt,max moves away from the ice edge with increasing floe size
(Fig. 5b).

Apart from the ice properties, the value and location of
σt,max are influenced by the characteristics of the incom-
ing waves, as shown in Fig. 6 for two selected ice thick-
nesses and for a range of floe lengths. For a given open-water
wavelength Lw,0, σt,max increases with increasing floe length
up to a certain “saturation” value (Fig. 6a, c). In contrast,
for large floes there is a certain open-water wavelength pro-
ducing maximum tensile stress (assuming the same incident
wave amplitude). Again, this is related to both wave reflec-
tion at the ice edge and the response of the ice itself. For very
short waves, strong reflection leads to lower wave amplitude
within the ice; for very long waves, however, reflection and
damping within the ice are weaker, but the wave steepness is
small as well, leading to less intense flexural motion of the

ice (see also Montiel et al., 2013). Most importantly, the lo-
cation of σt,max is almost independent of the incoming wave-
length (Fig. 6b, d; note that the size of the grains, and thus
the effective resolution of the model, equals 0.5 m, so that
the differences seen in the figures, especially in the case of
hi = 0.5 m, amount to just two–three grains).

For large floes, a few stress maxima with decreasing am-
plitude can be observed behind the main one, as shown in
Fig. 7. Sufficiently far from the floe edge, the stress am-
plitude decreases gradually, depending on the damping rate
(which depends on ice thickness and wave characteristics;
see also Fig. 4 and Sect. 3.1 for the discussion on the sources
of damping in the present model version). At the rear side of
large floes, small-amplitude ripples are observed before the
stress drops to zero – similar increase of the amplitude of
the vertical motion of elastic plates at their down-wave ends
has been observed and modeled, e.g., by Kohout et al. (2007)
and Yoon et al. (2014). As already mentioned, small floes
(Lo < Lw,0/2) have only one stress maximum, as they un-
dergo bending around their symmetry axis (Fig. 7b). As the
floe size exceeds Lw,0/2, the symmetry gradually vanishes
and the second maximum appears when Lo is close to Lw,0.

3.3 Breaking of uniform ice by regular waves

The spatiotemporal variability of tensile stress in the ice, de-
scribed above, is crucial for the evolution of ice breaking
and the resulting FSD. Figure 8 illustrates how breaking of a
large floe (Lo = 500 m) progresses from the ice edge deeper
and deeper into the ice, producing small floes with lengths
comparable to the distance of σt,max to the ice edge. An indi-
vidual wave is “responsible” for a few breaking events (be-
tween one and three in the case shown in Fig. 8; up to five
in other analyzed cases) and thus produces a few new ice
floes. In thinner ice, the number of new cracks per wave pe-
riod tends to be larger, i.e., breaking progresses into the ice
faster than in stronger, thicker ice. Moreover, as can be ex-
pected, the final width of the zone of broken ice is dependent
on ice strength as well and, in the cases analyzed, increases
roughly linearly with decreasing bond strength (not shown).
The resulting breaking pattern is not perfectly regular, but the
FSD is very narrow. In the simulation presented in Fig. 8, in
which the distance of σt,max from the ice edge equaled 8 m
(yellow curve in Fig. 6b), only four floe sizes were obtained,
6.5, 7.0, 7.5, and 8.0 m, with the mode of the distribution at
7.0 m. Generally, the location of σt,max appears to constitute
an upper bound on the size of floes detached from the edge
of continuous ice, and breaking takes place not farther than a
few grains in front of that limiting location.

Once the small floes break off the receding ice edge, they
begin to move as almost-rigid bodies, changing their verti-
cal position and rotating around their symmetry axis (Fig. 9).
In the present model, in which the horizontal component of
ice motion is not included, neighboring grains do not interact
with each other if they are not bonded. Thus, a very impor-
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Figure 4. Simulated space–time variability of the ice vertical displacement zi (a) in centimeters and the tensile stress σt (b) in Pa for an ice
floe with length Lo = 500 m, ice thickness hi = 0.5 m, and open-water wavelength Lw,0 = 42 m. Lower diagrams show the amplitude of zi
and σt in function of the distance from the ice edge. Magenta dot in panel (b) marks σt,max.
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Figure 8. Simulated space–time variability of the tensile stress σt (Pa) for an ice floe with length Lo = 500 m undergoing progressive
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tant mechanism of wave-energy attenuation is not taken into
account: floe–floe collisions. Consequently, the model pro-
duces lower attenuation rates in broken ice than in the initial
continuous ice sheet (Fig. 9b). This behavior is fully con-
sistent with the model assumptions, but not realistic. As a
result, the width of the zone of broken ice is likely overesti-
mated in the present model version. However, this drawback
hardly influences the overall breaking patterns, as they are
very robust to changes of the model configuration. As an ex-
ample, Fig. 10 shows the results of a simulation analogous to
that presented in Fig. 8, but with incoming waves with a Jon-
swap energy spectrum (one of widely used idealized models
of wave-energy spectra, suitable for a wide range of wind and

fetch conditions). As can be seen, even though the waves are
irregular and breaking takes places in short episodes (associ-
ated with wave groups) separated by quieter periods without
formation of new cracks, the final FSD is as regular as that
produced by sine waves. Another important mechanism not
taken into account in the present version of the model is mul-
tiple wave scattering by small ice floes detached from the ice
edge. As Montiel and Squire (2017) have recently shown,
scattering may lead to both destructive and constructive in-
terference, thus contributing to local decrease or increase of
the wave amplitude and strain of the ice. The net effects of
these processes on the wave attenuation rates and ice break-
ing patterns are hard to estimate and presumably sensitive
to the details of any particular configuration. (Note that the
present model is capable of simulating multiple scattering but
not in the configuration used here, in which the grains of the
sea ice module occupy full cells of the wave module, so that
no water–ice boundary conditions are applied at the vertical
walls of neighboring grains.)

Finally, it is worth noticing that the regular floe pattern de-
scribed above is obtained only in simulations in which the
“delayed” bond breaking mechanism, described at the end of
Sect. 2.2.2, was activated. Figure 11 compares the results of
two similar simulations, one with instantaneous and one with
“delayed” bond breaking. If breaking is instantaneous, a sud-
den drop to zero of all stress components at the broken loca-
tion produces short-wave disturbance propagating out of this
location in both directions (Fig. 11b). The excess stress re-
lated to that disturbance, combined with stress induced by the
propagating wave, leads to rapid bond breaking in neighbor-
hood of the initial breakage, producing very small ice floes,
typically two–three grains in size (compare Figs. 11a to 8b).
If, to the contrary, the drop of stress during bond breaking
is extended over a time period of just less than 0.1 s, it is
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Figure 10. As in Fig. 8 but for irregular incoming waves with Jonswap energy spectrum (wave height and peak period corresponding to those
of sine waves used in simulation from Fig. 8).

sufficient to suppress the amplitude of the breaking-induced
disturbance to insignificant levels (Fig. 11c). Consequently,
no additional breaking takes place around the initial crack.

4 Discussion and conclusions

In this paper, a coupled wave–ice model was used to analyze
wave-induced stress in sea ice and the resulting patterns of
sea ice breaking. The most important results can be summa-
rized as follows: (i) breaking of a continuous ice sheet by
waves produces floes of almost equal sizes, dependent on the
thickness and strength of the ice, but not on the characteris-
tics of the incoming waves. (ii) This breaking pattern results
from the fact that maximum tensile stress experienced by the
ice is located at a distance from the ice edge that does not
depend on incoming wavelength. (iii) The incoming wave
characteristics, together with ice properties, control the value
of the maximum stress, thus deciding whether breaking takes
place or the ice remains intact. (iv) For a given floe size, there
exist ice thickness and incident wave length for which the
stress reaches maximum and thus breaking is most likely to
occur.

As no attempt at calibrating the model against observa-
tional data was made, the numbers obtained as a result of
the simulations might be unrealistic. Also, as has been al-
ready mentioned in the previous section, there are a num-
ber of mechanisms of wave-energy dissipation that are not
included in the present version of the model (floe–floe col-
lisions, ice–water friction, multiple scattering by the floes
already broken off the ice edge, etc.). However, these facts
do not affect the general conclusions formulated above. The
present results agree with the findings of Squire et al. (1995),
described in the introduction, and provide another evidence
– obtained with a very different model than that of Squire
and colleagues – in favor of the hypothesis that it is the ice

itself (its thickness and strength) and not the incident waves
that decide upon the dominating floe size in MIZ, at least
during the initial stages of ice breaking (at later stages, many
other factors lead to further fragmentation of ice floes, pro-
ducing wide, heavy-tailed FSDs typically observed in inner
parts of MIZ; see, e.g., Toyota et al., 2011, 2016, and refer-
ences there). In particular, it is worth stressing that in terms of
the floe size resulting from breaking, the results are not sensi-
tive to the modeled attenuation rates of wave energy (which,
as already mentioned in Sect. 3.1, has been demonstrated in
model runs with artificially modified damping in bonds con-
necting grains). Breaking takes place within a narrow zone
of enhanced strain close to the edge of the yet unbroken ice.
Again, this is consistent with the observational and model-
ing results of Squire (1984b) and Squire et al. (1995), who
found that breaking is likely only within a region where the
secondary ice-coupled waves contribute to the increased ver-
tical deflection and thus strain of the ice. The amplitude of
these waves decays very fast with the distance from the ice
edge. Consequently, the probability of breaking decreases as
well, independently of the attenuation coefficient of the grad-
ually decaying propagating wave.

If further research confirms these results, it will have im-
portant consequences for formulating parameterizations of
wave–ice interactions for large-scale sea ice models, so that
the information on incoming waves (especially wave steep-
ness) is used to determine whether breaking of ice takes
place, but the maximum floe size Lmax is estimated based on
ice properties themselves. Note that, as already mentioned
in the introduction, in most parameterizations Lmax is the
only variable parameter describing the FSD; the shape of the
FSD for Lo < Lmax is assumed to be a power law with a
prescribed exponent. Note also that besides bending, a num-
ber of other wave-related processes may contribute to floe
breaking and thus to shaping the FSD, including floe–floe
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Figure 11. Comparison of the model behavior in simulations with instantaneous and “delayed” bond breaking: space–time variability of the
tensile stress σt (Pa) in a simulation analogous to that shown in Fig. 8 but with instantaneous bond breaking (a); and details of σt in the
vicinity of a selected breaking event from a simulation with instantaneous (b) and “delayed” (c) bond breaking. The curves in panels (b,
c) show σt along a selected fragment of the ice floe before (blue) and shortly after (red and yellow) breaking; dashed black lines mark the
location where breaking took place.

collisions, overwash, and rafting. These processes are depen-
dent on wave steepness and thus amplitude; presumably, they
modify the slope of the FSD, although no observational data
exist that would allow to formulate this dependence as a func-
tional relationship.

The model presented in this paper is undergoing fur-
ther development as part of a research project currently in
progress. In the new version, horizontal ice motion and ice
contact mechanics will be implemented (by adapting algo-
rithms from the DESIgn model; see Herman, 2016), enabling
us to run the model to study floe–floe collisions and situ-
ations with significant drift and/or surge motion of ice. At
later stages of the project, it is planned to extend the model
to two horizontal dimensions (the NHWAVE model is three-
dimensional, and significant parts of the sea ice module have
already been coded for two horizontal dimensions as well).
This will make it possible to analyze how the directional
width of the energy spectra of incoming waves, as well as
the angle between the wave propagation direction and the ice
edge affect the results obtained in this study. It is also worth
noticing that the code of the model can be easily extended by,
e.g., replacing the free-slip boundary conditions for velocity
at the wetted surface of the ice with other types of bound-
ary conditions, or by including wind or other processes al-
ready implemented in NHWAVE. It should be stressed that
NHWAVE is a very general hydrodynamic model that can be
applied to a wide range of conditions: it does not make any
assumptions regarding the irrotationality of the flow (as many
sea ice–wave interaction models do) or the type of the wave
forcing. Although in the computations presented in this pa-
per the water depth was relatively shallow (H = 10 m), deep-
water waves can be simulated without significant increase in
computational costs, because the model enables non-equally
spaced σ layers, with thickness adjusted to the vertical struc-

ture of the wave. The model also accepts a number of types
of boundary conditions, handles drying and flooding of grid
cells, etc. All these functionalities can be used in coupled
wave–ice simulations, making it a very flexible tool suitable
for a wide range of conditions. A serious limitation, however,
are very high computational costs of this modeling approach.
This makes the model suitable for analyzing details of se-
lected processes – like in this paper – rather than for prac-
tically oriented applications in sea ice and wave hindcasting
and forecasting.
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