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Abstract. Snow is an important component of water stor-
age in the Himalayas. Previous snowmelt studies in the Hi-
malayas have predominantly relied on remotely sensed snow
cover. However, snow cover data provide no direct informa-
tion on the actual amount of water stored in a snowpack, i.e.,
the snow water equivalent (SWE). Therefore, in this study
remotely sensed snow cover was combined with in situ ob-
servations and a modified version of the seNorge snow model
to estimate (climate sensitivity of) SWE and snowmelt runoff
in the Langtang catchment in Nepal. Snow cover data from
Landsat 8 and the MOD10A2 snow cover product were val-
idated with in situ snow cover observations provided by sur-
face temperature and snow depth measurements resulting in
classification accuracies of 85.7 and 83.1 % respectively. Op-
timal model parameter values were obtained through data as-
similation of MOD10A2 snow maps and snow depth mea-
surements using an ensemble Kalman filter (EnKF). Inde-
pendent validations of simulated snow depth and snow cover
with observations show improvement after data assimilation
compared to simulations without data assimilation. The ap-
proach of modeling snow depth in a Kalman filter framework
allows for data-constrained estimation of snow depth rather
than snow cover alone, and this has great potential for fu-
ture studies in complex terrain, especially in the Himalayas.
Climate sensitivity tests with the optimized snow model re-

vealed that snowmelt runoff increases in winter and the early
melt season (December to May) and decreases during the late
melt season (June to September) as a result of the earlier on-
set of snowmelt due to increasing temperature. At high el-
evation a decrease in SWE due to higher air temperature is
(partly) compensated by an increase in precipitation, which
emphasizes the need for accurate predictions on the changes
in the spatial distribution of precipitation along with changes
in temperature.

1 Introduction

In the Himalayas a part of the precipitation is stored as snow
and ice at high elevations. This water storage is affected
by climate change resulting in changes in river discharge in
downstream areas (Barnett et al., 2005; Bookhagen and Bur-
bank, 2010; Immerzeel et al., 2009, 2010). The Himalayas
and adjacent Tibetan Plateau are important water towers, and
water generated here supports the water demands of more
than 1.4 billion people through large rivers such as the Indus,
Ganges, Brahmaputra, Yangtze and Yellow River (Immerzeel
et al., 2010). So far, the main focus has been on the effect
of climate change on the glaciers and the resulting runoff.
However, snow is an important short-term water reservoir in
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the Himalayas, which is released seasonally, contributing to
river discharge (Bookhagen and Burbank, 2010; Immerzeel
et al., 2009). The contribution of snowmelt to total runoff is
highest in the western part of the Himalayas and lowest in
the eastern and central Himalayas (Bookhagen and Burbank,
2010; Lutz et al., 2014).

Although Himalayan snow storage is important for the wa-
ter supply in large parts of Asia, in situ observations of snow
depth are sparse throughout the region. Many studies bene-
fit from the continuous snow cover data retrieved from satel-
lite imagery to estimate snow cover dynamics or contribution
of snowmelt to river discharge (Bookhagen and Burbank,
2010; Gurung et al., 2011; Immerzeel et al., 2009; Maskey
et al., 2011; Wulf et al., 2016). Studies about snowmelt in
the Himalayas have predominantly relied on remotely sensed
snow cover and a modeled melt flux estimating melt runoff
resulting from this snow cover (e.g., Bookhagen and Bur-
bank, 2010; Immerzeel et al., 2009; Tahir et al., 2011; Wulf
et al., 2016). However, this approach provides no or lim-
ited information on snow water equivalent (SWE), which is
an important hydrologic measure as it indicates the actual
amount of water stored in a snowpack. SWE can be recon-
structed based on the integration of a simulated melt flux
over the time period of remotely sensed observed snow cover.
However, this method provides only information on the peak
SWE value and introduces errors when snowfall occurs dur-
ing the melt season (Durand et al., 2008; Molotch, 2009;
Molotch and Margulis, 2008). Currently there is only lim-
ited reliable information available on SWE for the Himalayas
(Lutz et al., 2015; Putkonen, 2004). SWE can be retrieved
with passive microwave remote sensing, but the results are
highly uncertain, especially for mountainous terrain and wet
snow (Dong et al., 2005). In addition, the spatial resolution is
coarse and therefore inappropriate for catchment scale stud-
ies in the Himalayas. Estimating both the spatial and tempo-
ral distribution of SWE and snowmelt is important for flood
forecasting, hydropower and irrigation in downstream areas.

Selection of a suitable snow model is critical to correctly
represent snow cover and SWE. Snow models of different
complexity exist and can be roughly divided into physically
based and temperature-index models. Several studies have
compared snow models of different complexity and their
performance. Physically based models typically outperform
temperature-index models in snowpack runoff simulations
on a sub-daily timescale (Avanzi et al., 2016; Magnusson et
al., 2011; Warscher et al., 2013). However, physically based
and temperature-index models have a similar ability to simu-
late daily snowpack runoff (Avanzi et al., 2016; Magnusson
et al., 2015). Avanzi et al. (2016) showed that the use of a
temperature-index model does not result in a significant loss
of performance in the simulation of SWE and snow depth
with respect to a physically based model. Even though phys-
ically based models outperform temperature-index models in
some cases, temperature-index models are often preferred,
as data requirements and computational demands are lower.

Especially in the Himalaya, data availability constrains the
choice of a snow model.

Assimilation of remotely sensed snow cover and ground-
based snow measurements has been proved to be an effec-
tive method to improve hydrological and snow model simu-
lations (Andreadis and Lettenmaier, 2006; Clark et al., 2006;
Leisenring and Moradkhani, 2011; Liu et al., 2013; Nagler et
al., 2008; Saloranta, 2016). Although different data assimila-
tion techniques exist, Kalman filter techniques are often se-
lected, due to their relatively low computation demand. They
estimate the most likely solution using an optimal combi-
nation of observations and model simulations. Especially in
catchments with strong seasonal snow cover, assimilation of
remotely sensed snow cover is expected to be most useful
as a result of fast changing conditions in the melting season
(Clark et al., 2006).

The aim of this study is to estimate SWE and snowmelt
runoff in a Himalayan catchment by assimilating remotely
sensed snow cover and in situ snow depth observations into
a modified version of the seNorge snow model (Saloranta,
2012, 2014, 2016). Climate sensitivity tests are subsequently
performed to investigate the change of SWE and snowmelt
runoff as result of changing air temperature and precipitation.
The approach of modeling snow depth allows us to validate
the quantity of simulated snow rather than snow cover alone
and is a new approach in Himalayan snow research.

2 Methods and data

2.1 Study area

The study area is the Langtang catchment, which is located in
the central Himalayas approximately 100 km north of Kath-
mandu (Fig. 1). The catchment has a surface area of approx-
imately 580 km2 from the outlet near Syabru Besi upwards.
The elevation ranges from 1406 m above sea level (a.s.l.) at
the catchment outlet to 7234 m a.s.l. for Langtang Lirung,
which is the highest peak in the catchment. The climate is
monsoon dominated and 68–89 % of the annual precipita-
tion falls during the monsoon (Immerzeel et al., 2014). Spa-
tial patterns in precipitation are seasonally contrasting, and
there is a strong interaction between the orography and pre-
cipitation patterns. At the synoptic scale, monsoon precip-
itation decreases from south to north, but at smaller scales
local orographic effects associated with the aspect of the
main valley ridges (Barros et al., 2004) determine the pre-
cipitation distribution. Numerical weather models suggest
that monsoon precipitation mainly accumulates at the south-
western slopes near the catchment outlet at low elevation,
while winter precipitation mainly accumulates along high-
elevation southern–eastern slopes (Collier and Immerzeel,
2015). Winter westerly events can also provide significant
snowfall. Snow cover has strong seasonality with extensive,
but sometimes erratic, winter snow cover and retreat of the
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Figure 1. Study area with the locations of the in situ observations.
Langtang and Langshisha refer to the two main glaciers in the upper
Langtang valley.

snowline to higher elevations during spring and summer. For
the upper part of the catchment (upstream of Kyangjin) it has
been estimated that snowmelt contributes up to 40 % of total
runoff (Ragettli et al., 2015).

2.2 Calibration and validation strategy

Remotely sensed snow cover, in situ observations and a mod-
ified version of the seNorge snow model were combined to
estimate SWE and snowmelt runoff dynamics. The remotely
sensed snow cover (Landsat 8 and MOD10A2 snow maps)
was first validated with in situ snow cover observations pro-
vided by surface temperature and snow depth measurements.
The snow model was used to simulate daily values of SWE
and runoff and was forced by daily in situ meteorological ob-
servations of precipitation, temperature and incoming short-
wave radiation. MOD10A2 snow cover and snow depth mea-
surements were assimilated to obtain optimal model parame-
ter values using an ensemble Kalman filter (EnKF; Evensen,
2003). The optimized parameters were used for a simulation
without assimilation of the observations (open loop). Finally,
the model outcome was validated with observed snow depth
and Landsat 8 snow cover.

2.3 Datasets

2.3.1 Remotely sensed snow cover

MOD10A2

MOD10A2 is a Moderate Resolution Imaging Spectrora-
diometer (MODIS) snow cover product available at http:
//reverb.echo.nasa.gov/. The online sub-setting and reprojec-
tion utility was used to clip and project imagery for the Lang-
tang catchment. MOD10A2 provides the 8-day maximum
snow extent with a spatial resolution of ∼ 500 m. If there
is one snow observation within the 8-day period, then the

pixel is classified as snow. The 8-day maximum extent of-
fered a good compromise between the temporal resolution
and the interference of cloud cover. The snow mapping al-
gorithm used is based on the normalized difference snow in-
dex (NDSI; Hall et al., 1995). The NDSI is a ratio of reflec-
tion in shortwave infrared (SWIR) and green light (GREEN)
and takes advantage of the properties of snow – i.e., snow
strongly reflects visible light and strongly absorbs SWIR –
Eq. (1):

NDSI=
GREEN−SWIR
GREEN+SWIR

. (1)

The NDSI is calculated with MODIS spectral bands 4
(0.545–0.565 µm) and 6 (1.628–1.652 µm). Pixels are clas-
sified as snow when the NDSI≥ 0.4. Water and dark targets
typically have high NDSI values, and, to prevent pixels from
being incorrectly classified as snow, the reflection should ex-
ceed 10 and 11 % for spectral bands 2 (0.841–0.876 µm) and
4 respectively for a pixel to be classified as snow (Hall et
al., 1995). A full description of the snow mapping algorithm
is given by Hall et al. (2002).

Landsat 8

Landsat 8 imagery from 15 April 2013 to 5 November 2014
was downloaded from http://earthexplorer.usgs.gov/. Cloud-
free scenes (10 out of 34), based on visual inspection, were
used to derive daily snow maps with high spatial resolution
(30 m). For each image digital numbers were converted to
top of atmosphere reflectance. For Landsat 8 the NDSI was
calculated with Eq. (1) with spectral bands 3 (0.53–0.59 µm)
and 6 (1.57–1.65 µm). The chosen threshold value was equal
to that used for the MOD10A2 snow cover product. The
NDSI has proven to be a successful snow mapping algo-
rithm for various sensors with a threshold value around 0.4
(Dankers and De Jong, 2004). Although the spectral bands
have slightly different band widths and spectral positions, a
threshold value of 0.4 gave satisfactory results when com-
pared with in situ snow observations. In addition, the reflec-
tion in near-infrared light should exceed 11 % to prevent wa-
ter from being incorrectly classified as snow (Dankers and
De Jong, 2004). Therefore, a pixel is classified as snow when
the NDSI value≥ 0.4 and the reflectance in near-infrared
light> 11 %.

2.3.2 In situ observations

Different types of snow and meteorological observations
were available for the study period (January 2013–September
2014; Table 1, Fig. 1). Two transects of surface tempera-
ture measurements on a north- and south-facing slope pro-
vided information on snow cover. The 13 temperature sen-
sors (Hobo Tidbits) were positioned on the surface and cov-
ered by a small cairn and recorded surface temperature with
10 min sampling intervals. Snow depths were measured with
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Table 1. Overview of the in situ observations and their specifications. Locations are shown in Fig. 1.

Description Code Data availability Latitude Longitude Elevation Observations∗

(dd/mm/yy) (m a.s.l.)

Yala 1 Y1 06/05/13–03/05/14 28.22645 85.56878 4117 TS
Yala 2 Y2 06/05/13–03/05/14 28.22897 85.57391 4214 TS
Yala 3 Y3 06/05/13–03/05/14 28.2298 85.58051 4328 TS
Yala 4 Y4 06/05/13–02/03/14 28.22932 85.58492 4441 TS
Yala 5 Y5 06/05/13–03/05/14 28.22894 85.5908 4541 TS
Yala 6 Y6 06/05/13–03/05/14 28.22635 85.5918 4656 TS
Yala 7 Y7 06/05/13–02/03/14 28.22635 85.59246 4759 TS
Yala 8 Y8 06/05/13–02/03/14 28.23342 85.59921 4960 TS
Ganjala 1 G1 03/11/13–11/10/14 28.20305 85.56405 3908 TS
Ganjala 2 G2 03/11/13–06/09/14 28.20155 85.56577 3998 TS
Ganjala 3 G3 03/11/13–11/10/14 28.19899 85.56617 4094 TS
Ganjala 4 G4 03/11/13–30/04/14 28.1938 85.56916 4201 TS
Ganjala 5 G5 03/11/13–11/10/14 28.18831 85.57001 4300 TS

Pluvio Yala Pluvio Y
01/01/13–30/06/13

28.22900 85.59700 4831
T , SD

26/10/13–16/10/14
Pluvio Ganjala Pluvio G 20/01/14–03/05/14 28.18625 85.56961 4361 SD
Pluvio Langshisha Pluvio L 29/10/13–01/07/14 28.20265 85.68619 4452 SD
Pluvio Morimoto Pluvio M 17/05/13–09/10/14 28.25296 85.68152 4919 T , SD
Lama Hotel T1 01/01/13–07/10/14 28.16212 85.43073 2492 T

Langtang T2 01/01/13–07/10/14 28.21398 85.52745 3557 T

Jathang T3 01/01/13–07/10/14 28.1958 85.6132 3947 T

Numthang T4 01/01/13–07/10/14 28.20213 85.64313 3983 T

AWS Kyangjin AWS K 01/01/13–07/10/14 28.2108 85.5695 3862 T , SD, P , IR
AWS Yala base camp AWS Y 01/01/13–07/10/14 28.23252 85.61208 5090 SD

∗ TS: surface temperature, SD: snow depth, T : air temperature, P : precipitation, IR: incoming shortwave radiation.

sonic ranging sensors at four locations at 15 min intervals.
Hourly measurements of snow depth were also made at the
Kyangjin and Yala base camp automatic weather stations
(AWS K and AWS Y; Fig. 1). Hourly means (or totals) of
air temperature, liquid and solid precipitation, and incom-
ing shortwave radiation were also recorded at AWS Kyangjin
(Shea et al., 2015). Air temperature data were also acquired
at several locations with 10 and 15 min recording intervals.

2.4 Model forcing

The snow model was forced with daily average and maxi-
mum air temperature, cumulative precipitation and average
incoming shortwave radiation for the time period January
2013–September 2014. Hourly measurements of air tempera-
ture, precipitation and incoming shortwave radiation at AWS
Kyangjin (Shea et al., 2015) were therefore aggregated to
daily values. This study period was chosen based on avail-
ability of forcing data and observations. Daily temperature
lapse rates were interpolated from the air temperature mea-
surements throughout the catchment and used to extrapolate
(average and maximum) daily air temperature observed at
AWS Kyangjin (Fig. 1). The derived temperature lapse rates
agree with the values found by Immerzeel et al. (2014). The
daily observed precipitation and temperature lapse rates were

corrected in the modified seNorge snow model with the cor-
rection factors P and Tlapse respectively to account for the
uncertainty related to undercatch and the derived temperature
lapse rates (Table 2). Although temperature has a strong rela-
tion with altitude and can be accurately derived from multiple
weather stations at different altitudes, small differences in the
temperature lapse rate (e.g., 0.001 ◦Cm−1) can result in tem-
perature differences of up to several degrees at high altitude
in Langtang due to the extreme topography (Immerzeel et
al., 2014). Hence, there is a need to consider a potential cor-
rection on the temperature lapse rate. A correction is also ap-
plied to the daily observed precipitation as precipitation mea-
surements are typically biased due to wind-induced under-
catch, especially for solid precipitation (Wolff et al., 2015).

Collier and Immerzeel (2015) modeled the spatial distribu-
tion of precipitation in Langtang using an interactively cou-
pled atmosphere and glacier mass balance model (Collier et
al., 2013). Their study revealed seasonally contrasting spa-
tial patterns of precipitation within the catchment. Monthly
modeled precipitation fields from this study were therefore
normalized and used to distribute the observed precipitation
at AWS Kyangjin. Similarly, a radiation model (van Dam,
2001; Feiken, 2014) was used to extrapolate observed in-
coming shortwave radiation. The radiation model takes into
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Table 2. Parameters in the snow model. Initial value indicates the uncalibrated parameter value and the value range indicates the range which
is used for the sensitivity analysis. Sensitivity of snow depth (SD) and snow extent (SE) represents the difference between the 90th and 10th
percentile of mean snow depth and snow extent resulting from the sensitivity analysis.

Parameter Unit Description Initial value Value range Sensitivity

SD SE
(mm) (km2)

TT (◦C)
Threshold temperature for onset

0g
−6 to 2d, f,g 157.3 57.25

of melt or refreezing

FSR (m2 mmW−2 d−1)
Melt factor dependent on

0.15g 0.13 to 0.19d,g 9.486 2.721
incoming shortwave radiation

FT (mm◦C−1 d−1) Melt factor dependent on temperature 4.32g 2.54 to 5.19d,g 9.486 2.721
thrsnow (◦C) Threshold for partitioning in rain or snow 0g

−1 to 1e,g 35.82 11.99
Crf (mm◦C−1 d−1) Degree-day refreezing factor 0.16e 0.08–0.40e 8.188 0.3248
aini (–) Decay of albedo deep snow (initial) 0.713b – – –

αu (–)
Albedo of surface underlying

0.15, 0.25g – – –
snow (ground, ice)

a1 (–) Decay of albedo deep snow 0.112b 0.112 to 0.34b,g 56.39 7.279
a2 (–) Decay of albedo shallow snow 0.442b 0.3 to 0.5 0.2410 0.2818
a3 (–) Decay of albedo shallow snow (exponent) 0.058b 0.03 to 0.1 0.2001 0.2132

rmax (–)
Maximum allowed fraction of

0.1e 0.05 to 0.20e 31.66 0.3278
liquid water in snowpack

d∗ (cm)
Scaling length for smooth transition albedo

2.4b 1 to 25 0.0012 0.0007
from deep snow to shallow snow

SS1 (m)
Regression function of parameter snow holding

250g 200 to 300 10.86 2.033
depth dependence on slope angle

SS2 (–)
Regression function of parameter snow holding

0.172g 0.16 to 0.19 26.45 7.170
depth dependence on slope angle

Smin (◦) Minimum slope for avalanching to occur 25a 15 to 35 34.00 1.640
ρav (kg L−1) Density of avalanching snow 0.200c – – –
ρmin (kg L−1) Minimum density of new snow due to snowfall 0.050e 0.050 to 0.15e – –
ans Coefficient for density of new snow 100e – – –

η0 (MNs m−2)
Coefficient related to viscosity of snow

7.6e 1 to 10e 75.75 –
(at zero temperature and density)

C5 (◦C−1) Coefficient for temperature effect on viscosity 0.1e 0.04 to 0.12e 10.44 –
C6 (L kg−1) Coefficient for density effect on viscosity 21e 15 to 35e 268.8 –
kcomp (–) Compaction factor 0.5e – – –
P (–) Precipitation correction factor 1 0.6 to 1.4 320.1 14.17
Tlapse (–) Temperature lapse rate correction factor 1 0.9 to 1.1 116.0 24.63

a Bernhardt and Schulz (2010). b Brock et al. (2000). c Hopfinger (1983). d Pellicciotti et al. (2012). e Saloranta (2014). f Ragettli et al. (2013). g Ragettli et al. (2015).

account the aspect, slope, elevation and shading due to sur-
rounding topography.

The model initial conditions for January 2013 (i.e., SWE
and snow depth) were set by simulating year 2013 three
times.

2.5 Modified seNorge model

The seNorge snow model (Saloranta, 2012, 2014, 2016) is
a temperature-index model which requires only data of air
temperature and precipitation. In addition, the seNorge snow
model includes a compaction module that can be used to as-
similate and validate snow depth rather than snow cover only.
The low data requirements and the compaction module make
the seNorge snow model suitable for application in this study.

The seNorge snow model was rewritten from its origi-
nal code into the environmental modeling software PCRas-
ter Python (Karssenberg et al., 2010) to allow spatiotemporal
modeling of the SWE and runoff within the catchment. The
snow is modeled as a single homogeneous layer with a spatial
resolution of 100 m and a daily time step. The seNorge model
was further improved by implementing a different melt al-
gorithm, albedo decay and avalanching. These novel model
components are described hereafter, and the model parame-
ters used are given in Table 2.

2.5.1 Water balance and snowmelt

Precipitation in the model is partitioned as rain or snow based
on an air temperature threshold thrsnow (◦C). The snowpack
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consists of a solid component and possibly a liquid compo-
nent. Meltwater and rain can be stored within the snowpack
until its water holding capacity is exceeded and has the pos-
sibility to refreeze within the snowpack. The original melt al-
gorithm of the seNorge snow model is substituted by the en-
hanced temperature-index approach (Pellicciotti et al., 2005,
2008). When air temperature (T ; ◦C) exceeds the temper-
ature threshold for melt onset (TT; ◦C), the potential melt
(Mpot; mmd−1) is calculated for each pixel by Eq. (2):

Mpot = T ·FT+FSR · (1−α) ·Rinc, (2)

where FSR (m2 mm W−2 d−1) is a radiative melt factor, FT
(mm ◦C−1 d−1) is a temperature melt factor, α (–) is the
albedo of the snow cover and Rinc (Wm−2) is the incoming
shortwave radiation. In case that the threshold temperature is
negative, the potential melt can become negative when the
radiation melt component is not positive enough to compen-
sate for the negative temperature melt component. When the
potential melt is negative it is set to zero to prevent negative
values.

The simulated runoff in the seNorge snow model is the to-
tal runoff, i.e., the sum of snowmelt and rain. As the focus
of this study is on snowmelt runoff it is necessary to split the
runoff in snowmelt and rain runoff. Meltwater and rain fill
up the snowpack until its water holding capacity is exceeded.
The surplus is defined as snowmelt and rain runoff respec-
tively. If both rain and snowmelt occur it is assumed that rain
saturates the snowpack first. Rain falling on snow-free por-
tions of the basin is included in the rain runoff totals.

2.5.2 Albedo decay

Decay of the albedo of snow is calculated with the algorithm
developed by Brock et al. (2000) in which the albedo is a
function of cumulative maximum daily air temperature Tmax
(◦C). When Tmax is above 0 ◦C the air temperature is summed
as long as snow is present and no new snow has fallen. When
Tmax is below 0 ◦C the albedo remains constant. Albedo de-
cay is calculated differently for deep snow (SWE≥ 5 mm)
and shallow snow (SWE< 5 mm). The albedo decay for deep
snow is a logarithmic decay, whereas the decay for shallow
snow is exponential. This results in a gradual decrease of the
albedo for several weeks, which agrees with reality (Brock
et al., 2000). When new snow falls the albedo is set to its
initial value. In Langtang the observed albedo of fresh snow
is 0.84 and the observed minimum precipitation rate to reset
the snow albedo is 1 mmd−1 (Ragettli et al., 2015).

2.5.3 Avalanching

After snowfall events, avalanching occurs regularly on steep
slopes in the catchment. Therefore, snow transport due to
avalanching is considered to be an important process for re-
distribution of snow in the Langtang catchment (Ragettli et
al., 2015). Snow avalanching is implemented in the model us-

ing the SnowSlide algorithm (Bernhardt and Schulz, 2010).
For each cell a maximum snow holding depth SWEmax (m),
depending on slope S (◦), is calculated using an exponential
regression function following Eq. (3):

SWEmax = SS1+ e
−SS2·S, (3)

where SS1 and SS2 are empirical coefficients. If SWE ex-
ceeds SWEmax and the slope exceeds the minimum slope
Smin for avalanching to occur, then snow is transported to the
adjacent downstream cell. Snow can be transported through
multiple cells within one time step.

As the snowpack is divided into an ice and liquid com-
ponent, both the ice and liquid components should be trans-
ported downwards. Avalanches in the Langtang catchment
mainly occur at high elevations where temperatures are low
and (almost) no liquid water is present in the snowpack.
It is therefore assumed that avalanches are dry avalanches
and that no liquid water is present in the avalanching snow.
When there is, in rare circumstances, liquid water present
in avalanching snow, the liquid water is converted to the ice
component to ensure water balance closure.

2.5.4 Compaction and density

The compaction module is described in detail in Saloranta
(2014, 2016). In this module SWE is converted into snow
depth. Change in snow depth occurs due to melt, new snow
and viscous compaction. The change in snow depth due to
new snow is adapted such that an increase in snow depth
can occur due to both snowfall and deposition of avalanch-
ing snow. The increase in snow depth due to deposition of
avalanching snow is calculated using a constant snow den-
sity for dry avalanches (200 kgm−3; Hopfinger, 1983).

2.6 Data assimilation

2.6.1 Sensitivity analysis

In order to assess which model parameters to calibrate, a lo-
cal sensitivity analysis was performed by varying the value
of one parameter at a time while holding the values of other
parameters fixed. This gives useful first order estimates for
parameter sensitivity, although it cannot account for param-
eter interactions. Plausible parameter values were based on
the literature (Table 2). The model was run in Monte Carlo
(MC) mode with 100 realizations for each parameter. The
values for the parameters were randomly chosen from a uni-
form distribution with defined minimum and maximum val-
ues for the parameters. The snow extent and snow depth were
averaged over the study period and study area for the sen-
sitivity analysis. The sensitivity of the modeled mean snow
extent and mean snow depth were compared to the changes
in parameter values. A pixel is determined to be snow cov-
ered in the model when the simulated SWE exceeds 1 mm.
All the parameters were varied independently per run, except
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for the melt factors (FT and FSR), as these are known to be
dependent on each other (Ragettli et al., 2015). Therefore, FT
and FSR were varied simultaneously in the sensitivity analy-
sis using a linear relation between these melt factors.

2.6.2 Parameter calibration

Using the ensemble Kalman filter (Evensen, 1994), data as-
similation of snow extent and snow depth observations was
used to calibrate model parameters using the framework de-
veloped by Wanders et al. (2013). Both the EnKF and par-
ticle filter (PF) have been used in several studies to assim-
ilate snow observations into snow models (e.g., Charrois et
al., 2016; Leisenring and Moradkhani, 2011; Liu et al., 2013;
Magnusson et al., 2016). The EnKF and PF are similar in
their approach (estimate the model uncertainty from the par-
ticle or ensemble spread). The EnKF can only be used for
assimilation of continuous values and not for binary values
(i.e., snow cover present or not). Therefore, it is necessary
to assimilate snow extent (continuous values) into the model,
which results in a partial loss of spatial information of snow
cover. However, the EnKF has a higher efficiency when it
deals with Gaussian data and related errors. The computa-
tional demand required for a PF exceeds the EnKF’s com-
puter requirements, due to the need to cover the entire (non-
Gaussian) distribution. When the number of particles be-
comes too low, there is an additional risk of particle collapse,
especially when one wants to take into account all the grid
cells in the simulation with or without snow. This would re-
quire a total particle number exceeding the total number of
grid cells in the domain, in combination with all the pos-
sible parameter combinations to avoid collapse of the filter.
For a single site or small sites a PF would be a good alterna-
tive (e.g., Charrois et al., 2016; Magnusson et al., 2016), but,
limited by the current available computational power, this is
only feasible with an EnKF implementation. As we deal with
continuous values, it is computationally efficient and allows
for dual-state parameter estimations. The lower number of
ensemble members compared to a PF allowed us to run mul-
tiple simulations over longer time periods, providing a better
estimate of the potential of the EnKF improvements.

An advantage of the EnKF calibration framework is that
it allows for the obtaining of an uncertainty estimate for the
calibrated parameters. The EnKF obtains the simulation un-
certainty by using an MC framework, where the spread in
the ensemble members represents the combined uncertainty
of parameters and input data. Unfortunately, the EnKF does
not allow us to reduce and estimate the model structure un-
certainty, since it relies on the assumption that the ensem-
ble members are normally distributed. This assumption is
no longer valid if multiple model schematizations are used.
Therefore, it is assumed that the model is capable of ac-
curately simulating the processes, when provided with the
correct parameters. Besides the parameter and model uncer-
tainty, there is uncertainty in the observations which are as-

similated. The EnKF finds the optimal solution for the model
states and parameters, based on the observations and mod-
eled predicted values and their respective uncertainties. With
sufficient observations the parameters will convert to a stable
solution with an uncertainty estimate that is dependent on the
observations error and the ability of the model to simulate
the observations. It was found that 50 ensemble members are
sufficient to obtain stable parameter solutions and correctly
represent the parameter uncertainty.

The EnKF was applied for each time step that observations
were available. The MOD10A2 snow extent was divided into
six elevation zones. The snow extent per elevation zone was
derived from the MOD10A2 snow cover and used for as-
similation to include more information on spatial distribution
of snow. The elevation zone breakpoints are at 3500, 4000,
4500, 5000 and 5500 m a.s.l. Snow maps with more than
30 % cloud cover and with obvious misclassification of snow
were exempted from assimilation (3 snow maps out of 88).
Only for cloud-free pixels, comparisons were made between
modeled and observed snow extent. Two snow depth ob-
servation locations (Pluvio Langshisha and AWS Kyangjin;
Fig. 1) were also assimilated.

The EnKF framework allows for the inclusion of an uncer-
tainty in the assimilated observations. Point snow depth mea-
surements have high uncertainties that are related to limited
representativeness of point snow depth observations in com-
plex terrain due to local influence of snow drift (Grünewald
and Lehning, 2015). For the snow depth measurements a
variance of 25 cm was chosen to represent the uncertainty
of point snow depth measurements. The MOD10A2 snow
extent was assigned an uncertainty based on the classifica-
tion accuracy (fraction of correctly classified pixels) deter-
mined with the in situ snow observations (Sect. 3.1.2). The
uncertainty is dependent on the snow extent (SE; m2), i.e.,
an increase in uncertainty for an increase in snow extent.
To prevent the uncertainty from becoming zero when there
is no snow cover, the minimum variance for each zone was
restricted to the average snow extent SEzone (m2) × the ac-
curacy (–). Therefore, the variance σ 2 per elevation zone is
defined following Eq. (4):

σ 2
=max

((
SEzone · accuracy

)2(SEzone · accuracy
)2

)
. (4)

The four most sensitive parameters (TT, Tlapse, P and C6) re-
sulting from the sensitivity analysis were optimized based on
the assimilation of snow depth and MOD10A2 snow extent.
The first three parameters (TT, Tlapse and P ) influence both
snow depth and snow extent and were optimized by assim-
ilating MOD10A2 snow extent. The fourth parameter (C6)
is an empirical coefficient relating viscosity to snow density
and only influences snow depth. C6 was optimized by as-
similating snow depth observations and taking into account
the full uncertainty in the previously determined parameters.
The two-step approach was chosen to restrict the degrees of
freedom and to prevent unrealistic parameter estimates.
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Table 3. Changes in temperature (1T ) and precipitation (1P ) for
the climate sensitivity tests (same as Immerzeel et al., 2013).

Sensitivity test 1T 1P

(◦C) (%)

Dry, cold 1.5 −3.2
Dry, warm 2.4 −2.3
Wet, cold 1.3 12.4
Wet, warm 2.4 12.1

2.7 Climate sensitivity

Climate sensitivity tests were performed to investigate
changes in SWE and snowmelt runoff as a result of tempera-
ture and precipitation changes. Climate sensitivity was tested
by perturbing daily average air temperature, daily maximum
air temperature and daily cumulative precipitation using a
delta-change method. Immerzeel et al. (2013) extracted tem-
perature and precipitation trends from all available CMIP5
simulations for the emission scenario RCP 4.5 for the Lang-
tang catchment. They selected four models that ranged from
dry to wet and from cold to warm. Four climate sensitivity
tests were performed based on the projected changes in tem-
perature and precipitation found by Immerzeel et al. (2013)
(Table 3).

Figure 2 shows the monthly cumulative precipitation and
the average daily maximum temperature per month measured
at AWS Kyangjin for the study period. These data are also
available for the time period 1988–2009 and are used to char-
acterize the climatology of the catchment. Comparison of the
measurements of the 1988–2009 period and the study period
shows that the maximum temperature is similar for both time
periods, whereas more variability exists in the cumulative
precipitation. Especially in October, a large difference exists
in cumulative precipitation, which is caused by a large pre-
cipitation event of approximately 100 mm during the study
period.

3 Results and discussion

3.1 Validation of snow maps with in situ observations

3.1.1 In situ snow observations

Surface temperature is an indirect measure of presence of
snow. Figure 3 shows observed surface temperature for two
locations. Snow cover is distinguishable based on the low di-
urnal variability in surface temperature when snow is present
due to the isolating effect of snow (Lundquist and Lott,
2008). An optimal threshold for distinguishing between snow
and no snow was determined to be a 2 ◦C difference between
daily minimum temperature and maximum temperature. The
use of a larger temperature interval as threshold value was
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Figure 2. Comparison of maximum temperature (Tmax) and cumu-
lative monthly precipitation (P ) for the study period (January 2013–
September 2014) and the 1988–2009 time series (based on measure-
ments in Kyangjin). The average yearly cumulative precipitation is
853 and 663 mm for the study period and the 1988–2009 time series
respectively.

Figure 3. Observed surface temperature with 10 min interval at two
locations (Table 1). The blue vertical lines indicate the start and end
of the snow cover.

explored; however, as diurnal temperature variability is small
during monsoon (Immerzeel et al., 2014) setting, the diurnal
cycle temperature threshold above 2 ◦C may result in incor-
rect monsoon snow observations.

3.1.2 Remotely sensed snow cover

Both observed surface temperature and snow depth mea-
surements were converted to daily and 8-day maximum bi-
nary snow cover values to validate Landsat 8 and MOD10A2
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Table 4. Confusion matrices for comparison of Landsat 8 snow
maps and MOD10A2 snow maps with in situ snow observations.

MOD10A2 Landsat 8

Snow No snow Snow No snow

In situ
Snow 83 31 20 3
No Snow 75 438 18 106

snow cover respectively. We find that the classification ac-
curacy of MOD10A2 and Landsat 8 snow maps based on
all in situ snow observations is 83.1 and 85.7 % respectively.
The classification accuracy is defined as the number of cor-
rectly classified pixels divided by the total number of pix-
els. Table 4 shows the confusion matrices. Misclassification
can be a result of variability of snow conditions within a
pixel and classification of ice clouds or high cirrus clouds
as snow (Parajka and Blöschl, 2006). Large viewing angles,
and consequently larger observation areas, may also result
in misclassification (Dozier et al., 2008). MOD10A2 has a
lower spatial resolution than Landsat 8 which likely causes
the slightly lower accuracy for the MOD10A2 snow cover
product (Hall et al., 2002). Visual inspection of MOD10A2
snow maps also revealed that some clouds are erroneously
mapped as snow cover.

The accuracy of MODIS daily snow cover products are
reported to be 95 % for mountainous Austria (Parajka and
Blöschl, 2006) and 94.2 % for the upper Rio Grande basin
(Klein and Barnett, 2003). The lower accuracy presented in
this study is likely a result of the simplification of the 8-day
composite product and more extreme relief and consequently
larger spatial variability in snow cover. Besides classification
errors, uncertainty in the in situ snow observations should be
considered as well. For the in situ snow cover observations
provided by surface temperature, there are relatively many
observations for which snow is not observed in situ, while
the MOD10A2 and Landsat 8 snow maps indicate that snow
should be present (Table 5). This may be caused by the fact
that a thin snow layer may not result in sufficient isolation
to reduce the diurnal temperature fluctuations for observa-
tion as snow (Lundquist and Lott, 2008). This observation
bias in the temperature-sensed snow cover data would indi-
cate that MOD10A2 and Landsat 8 snow maps possibly have
even higher accuracies than presented here based on this val-
idation approach.

3.2 Model calibration

The results of the sensitivity of mean snow extent and mean
snow depth to parameter variability are shown in Table 2.
The sensitivity analysis shows that the threshold temperature
for melt onset (TT), precipitation bias (P ), temperature lapse
rate bias (Tlapse) and the coefficient for conversion for viscos-
ity (C6) are the most sensitive parameters. For the snow com-

Table 5. Confusion matrices for comparison of in situ snow obser-
vations provided by snow depth and surface temperature observa-
tions with remotely sensed snow maps (MOD10A2 and Landsat 8
combined).

In situ In situ
snow surface
depth temperature

Snow No snow Snow No snow

Remotely Snow 52 16 51 77
sensed No Snow 17 80 17 464

Table 6. Parameter value range prior to calibration and after calibra-
tion. The standard deviation of posterior parameter values is based
on the standard deviation of all members.

Parameter Prior Posterior Posterior
(min–max) mean standard

deviation

TT −6 to 2 −8.18 1.66
Tlapse 0.9 to 1.10 1.10 0.01
P 0.6 to 1.4 1.31 0.02
C6 15 to 35 16.07 0.52

paction parameters, snow depth is most sensitive for changes
in C6, which is in agreement with Saloranta (2014). The
melt parameters FSR and FT influence melt directly but show
small sensitivity, as these parameters are dependent on each
other. A higher value for FT coincides with a lower value
for FSR where the value of both parameters is climate zone
dependent (Ragettli et al., 2015).

Only the four most sensitive parameters were chosen to
be calibrated by the EnKF to limit the degrees of freedom
and to prevent the absence of convergence in the solutions
for the parameters. Table 6 shows the prior and posterior pa-
rameter distribution resulting from the assimilation of snow
extent per zone and snow depth. The parameter values for
Tlapse, P and C6 show a narrow posterior distribution (i.e.,
small standard deviation) indicating that parameter uncer-
tainty is small. Tlapse and P represent measurement uncer-
tainties of the model inputs. After calibration the modeled
precipitation is increased and the temperature lapse rate is
slightly steeper (more negative) than derived. The calibrated
value of TT shows a large standard deviation indicating ab-
sence of convergence in parameter solutions. This can be ei-
ther a result of insufficient data to determine the parameter
value or insensitivity of the model to the parameter value. A
negative value for TT is plausible as melt can occur with air
temperatures below 0 ◦C when incoming shortwave radiation
is sufficient. Especially at low latitudes and high elevation,
solar radiation is an important cause of snowmelt (Bookha-
gen and Burbank, 2010). TT is reported to be as negative as
−6 ◦C for Pyramid Station, Nepalese Himalayas (Pellicciotti
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Figure 4. Modeled 8-day maximum snow extent before and after calibration (ensemble mean); Landsat 8 snow extent and MOD10A2 snow
extent per elevation zone. The RMSE (km2) is given per zone for the fit between modeled (before and after calibration) and MOD10A2 snow
extent.

et al., 2012). Here TT lies in a range which is even more
negative than −6 ◦C. This is likely to be partly a result of
the model structure. When TT is negative the melt algorithm
(Eq. 2) can give negative values. The temperature term in
Eq. (2) becomes negative in case the air temperature is below
zero degrees but higher than TT. The reason for negative melt
to occur in a few rare cases is a limitation of the EnKF cali-
bration in combination with the enhanced temperature-index
method. The EnKF does not allow us to constrain parame-
ter ranges and this results in a relative low TT, which may
occasionally lead to negative melt when incoming shortwave
radiation is low and the air temperature is above TT. In those
cases when negative melt occurs, it is capped to zero, and as
a results the model is relatively insensitive for low tempera-
tures close to the TT and the EnKF does not converge into a
parameter solution.

3.3 Model validation

3.3.1 Snow cover

Both the modeled and MOD10A2 snow extent show strong
seasonality of snow cover in the catchment (Fig. 4). After cal-
ibration, modeled snow extent shows notable improvement in

elevation zone 3500–4000 m a.s.l. during the melt season in
2014. After calibration the threshold temperature for melt on-
set is lower, resulting in more and earlier onset of snowmelt.
Consequently there is a decreased snow extent. The zones
in the lower areas are expected to show most improvement,
as this is the area where snow cover is ephemeral, and con-
siderable improvements of the modeled snow extent in ele-
vation zone 3500–4000 m a.s.l. are indeed observed (Fig. 4).
The root mean square error (RMSE) decreased from 14.2 to
11.2 km2 after calibration. The simulated snow extent agrees
well with MOD10A2-observed snow cover for the higher el-
evation zones (> 4500 m a.s.l.). An exception is the snow ex-
tent in summer 2013 in the elevation zone 5000–5500 m a.s.l.
The snow model underestimates the snow extent compared to
the MOD10A2 snow extent. This discrepancy is possibly the
result of (i) overestimation of simulated melt, (ii) an actual
snow event that is simulated as rain by the model due to too-
high air temperature or (iii) erroneous mapping of clouds as
snow in the MOD10A2 snow cover.

The model classification accuracy of snow cover after cal-
ibration is 85.9 % based on pixel comparison between mod-
eled 8-day maximum snow extent and MOD10A2 snow ex-
tent. The classification accuracy is the average classification
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accuracy over all members. There is only a slight increase of
0.2 % in accuracy after calibration; however, the performance
was already high (85.7 %) before calibration. The classifi-
cation accuracy is lower on steep slopes where avalanching
is common, and as the snow extent in avalanching zones is
highly dynamic, this is not well captured in the model. Cali-
bration of parameters that influence avalanching might over-
come this discrepancy to some degree; however, a more ad-
vanced approach to avalanche modeling may be required. In
addition, the spatial resolution of the remotely sensed snow
cover is likely to be insufficient to detect the avalanche dy-
namics. Other potential explanations for lower classification
accuracies are uncertainties related to the simulated precipi-
tation phase (rain or snow) and the simulated spatial distribu-
tion of precipitation based on Collier and Immerzeel (2015).

Landsat 8-derived snow extent is lower in winter than
the modeled snow extent and the MOD10A2 snow extent
(Fig. 4). Distinct differences between the Landsat 8 instan-
taneous snow cover observations and the MOD10A2 8-day
maximum snow cover extents (Fig. 4) can be attributed to
(i) the sensitivity of the Landsat 8 snow cover maps to mis-
classified snow pixels in the shaded area, (ii) the much higher
spatial resolution of Landsat 8 (Hall et al., 2002), and (iii) the
difference between an instantaneous image and an 8-day
composite.

The model classification accuracy, based on pixel com-
parison with Landsat 8 snow maps, increased from 74.7 to
78.2 % after calibration. In Table 7 individual model clas-
sification accuracy is given based on comparison with each
Landsat 8 snow map. Relative low accuracies occur in winter
(especially on 20 December 2013 and 5 January 2014), and
the model overestimates snow cover compared to the Land-
sat 8 snow maps (Fig. 4). The overestimation of snow cover
by the model on 20 December 2013 is particularly large, and
it can be explained by a small snow event (2.3 mm measured
at Kyangjin) a few days before the acquisition. With below
zero temperatures the model simulates a large snow cover ex-
tent, but based on a very small amount. Snow redistribution
by wind, a patchy snow cover and/or sublimation may also
explain the mismatch with the Landsat 8 snow cover in this
particular case.

3.3.2 Snow depth

The observed and modeled snow depths at four locations are
shown in Fig. 5. The simulated snow depth is given for the
model simulations (i) without calibration, (ii) after calibra-
tion of snow extent, and (iii) after calibration of both snow
extent and snow depth. After calibration with snow extent
there is an increase in snow depth for Yala Pluvio and Yala
BC for the entire snow season as result of increased simu-
lated precipitation. For Langshisha and Kyangjin the snow
depth mainly decreased after calibration with snow extent.
These stations are at a lower elevation, and, since the thresh-
old temperature for melt onset is lowered after calibration,

Table 7. Classification accuracy of modeled snow extent based on
pixel comparison with Landsat 8 snow maps. Calibrated accuracies
are averaged over all members and the standard deviation represents
the standard deviation in individual member accuracies (after cali-
bration).

Date Accuracy Accuracy Standard
(dd/mm/yy) uncalibrated calibrated deviation

accuracy

(%)

02/11/13 80.96 84.41 0.12
18/11/13 78.43 79.15 0.11
04/12/13 77.41 77.10 0.05
20/12/13 54.97 60.38 0.08
05/01/14 63.46 67.07 0.07
20/01/14 74.30 81.33 0.04
06/02/14 65.55 73.24 0.05
10/03/14 84.94 89.67 0.05
26/03/14 87.03 86.90 0.04
11/04/14 80.29 82.92 0.05

this leads to reduced snow depth. At all locations the mod-
eled snow depth decreased after calibration with both snow
extent and snow depth due to lowering of the parameter re-
lating snow density to snow depth. After calibration with
both snow extent and snow depth, comparison of modeled
and observed snow depth at Langshisha shows good agree-
ment. Especially after calibration, the timing of the melt on-
set during spring is improved. For Yala Pluvio and Yala BC
the agreement between modeled and observed snow depth is
also good, though improvement of the timing of melt onset
is limited. For Kyangjin the modeled snow depth does not
agree as well with observed snow depth in spring 2013, but it
improves in 2014. In spring the snow cover duration of snow
events decreases after calibration and improves the fit with
the observed snow depth.

Yala Pluvio and Yala BC are the only locations that serve
as an independent validation of snow depth, as these stations
are not used for the assimilation. The simulated melt onset
in spring is later compared to what is observed. The diurnal
variability of air temperature is high during the pre-monsoon
season (March to mid-June; Immerzeel et al., 2014). Though
daily average air temperatures are below zero, positive tem-
peratures and snowmelt can occur in the afternoon above
5000 m a.s.l. (Shea et al., 2015; Ragettli et al., 2015). This
can explain the difference between simulated and observed
melt onset. Using an hourly time step might therefore im-
prove the simulation of snowmelt in spring (Ragettli et
al., 2015). While the timing of snowpack depletion at Yala
Pluvio and Yala BC are offset from the observations, the
modeled quantity of snow is in the same order of magni-
tude for both modeled and observed time series. Hence, there
is no substantial overestimation or underestimation of snow
depth. The RMSE between simulated and observed snow
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Figure 5. Observed snow depth and modeled snow depth (i) before calibration, (ii) after calibration of snow extent (SE), and (iii) after
calibration of both snow extent and snow depth (SD+SE; ensemble mean) at three locations. The RMSE (mm) is given for the fit between
modeled (before and after calibration) and observed snow depth.

depth decreases after calibration with both snow extent and
snow depth compared to the uncalibrated simulation of snow
depth and after calibration of only snow extent. This shows
the benefit of assimilating both snow extent and snow depth
into the snow model to obtain optimal parameter values.

While this study shows an approach in using snow depth
observations for assimilation and validation, only four loca-
tions with snow depth observations were available. The num-
ber of available snow depth observations and the choice of
different stations for assimilation might influence the results.
Four snow depth observations are insufficient for systematic
assimilation and independent validation. However, our ap-
proach is useful and is recommended for future studies in
the Himalayas, in particular when more point observations
of snow depth are available.

3.4 Climate sensitivity of SWE and snowmelt runoff

The cumulative basin-wide mean snowfall is 1222 mm for
the simulation period. Nearly one-third (31.4 %) of the snow-
fall is transported to lower elevations due to avalanching,
and 16.2 % of the snowfall is transported to elevations lower
than 5000 m a.s.l. Transport of snow to lower elevations con-
tributes to snowmelt runoff and has been estimated to be
4.5 % of the total water input for the upper part of the Lang-
tang catchment (Ragettli et al., 2015).

The simulation of the SWE for the study period shows a
pattern of increasing SWE with increasing elevation (Figs. 6
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Figure 6. Spatial distribution of ensemble mean annual average
snow water equivalent (SWE).

and 7). At higher elevation, air temperature is lower with
more snow accumulation than melt, resulting in a higher gain
in SWE over time. The glaciers Langtang and Langshisha
are positioned at approximately the same elevation (Ragettli
et al., 2015), though the SWE is considerably higher at the
Langshisha glacier (Fig. 6) due to the precipitation distribu-
tion approach we use. Also, some areas at higher elevation
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Figure 7. Boxplots of SWE per elevation zone averaged over the simulation period and all ensemble members for the study period (reference)
and the four climate sensitivity tests (Table 3).

Figure 8. Change in SWE averaged over the simulation period and all members for each climate sensitivity test (Table 3).

show less SWE than surrounding areas at the same elevation.
These areas represent the steep slopes in the catchment where
avalanching occurs regularly. The transported snow accumu-
lates below these steep slopes. The simulated avalanches are
based on a simple model parameterization in which the snow
is transported via single stream paths, resulting in a few pix-
els with extreme accumulation of SWE. This is mainly vis-
ible in the northeastern part of the catchment. Modeling the
divergence of transported snow might improve the extreme
accumulation simulated for some pixels.

For the climate sensitivity tests a delta-change method is
used. This method has limitations as climate variability of
future climate is not constant compared to the study period
(Kobierska et al., 2013). In addition, Kobierska et al. (2013)

showed that changes in runoff due to climate change are pre-
dicted differently by a physically based snow model and a pa-
rameterized snow model for a glacierized catchment. Param-
eterized snow models (such as the modified seNorge snow
model that is used in this study) are calibrated to fit the cur-
rent climate and not future climate and might therefore be in-
capable of predicting future states of the snowpack. However,
the scope of this study is to show the sensitivity of the SWE
and snowmelt runoff to changes in air temperature and pre-
cipitation and not that of a full-fledged climate impact study.
Therefore, the use of a parameterized snow model and the
delta-change method is suitable in this case.

Figures 7 and 8 show the results of the absolute and rel-
ative change in SWE for different climate sensitivity tests.
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Figure 9. Modeled runoff at catchment outlet for the study period (January 2013–September 2014) and change in runoff compared to the
study period for the climate sensitivity tests.

All climate sensitivity tests show a decrease in SWE, but
the relative change is greatest at low elevations in the val-
ley. We also observe a strong gradient of decreased relative
change in SWE with increased elevation. An increase in tem-
perature leads to an increase in melt and more precipitation
in the form of rain instead of snow. Both processes result
in decreased relative change of SWE with elevation. Near
the catchment outlet there is an area with 100 % decrease in
SWE, as precipitation will only fall as rain instead of snow.

A slight deviation from the elevational trend in SWE
change occurs between 3000 and 4000 m a.s.l., which is a
zone that could be sensitive to changes in the elevation
at which snowfall occurs. The combination of snowfall at
higher elevations due to higher temperature and the monthly
differing spatial patterns in precipitation are likely to explain
the banded patterns.

Changes in SWE and the spatial distribution of SWE will
also be affected by changes in total precipitation. The influ-
ence of precipitation can be determined based on compari-
son of the two wet and dry climate sensitivity tests (Figs. 7
and 8). A decrease in precipitation results in decreased SWE
as there is less snowfall. However, the increased precip-
itation for the wet/cold and wet/warm climate sensitivity
tests (+12.1 and+12.4 % respectively) does not compensate
for the temperature-related increase in melt and decrease in
snowfall in the valley.

Reduced warming under the wet/cold climate sensitiv-
ity test results in a smaller decrease of SWE compared to
the wet/warm climate sensitivity test, even in the valley. At

higher elevations, changes in SWE are weakly negative and
in some areas positive. Snowpack sensitivity to temperature
change decreases with elevation (Brown and Mote, 2009).
The increased SWE under both wet climate sensitivity tests
occurs in the southeastern part of the catchment where rel-
atively large amounts of precipitation occur in winter (Col-
lier and Immerzeel, 2015). Schmucki et al. (2015) showed
similar results for the Alps. They showed that low- and mid-
elevation stations are sensitive to temperature change but not
to precipitation change. In contrast, at high-elevation stations
an increase in precipitation partly compensates for an in-
crease in temperature. The compensating effect of increased
precipitation at high elevations is important for glacier sys-
tems and emphasizes the importance of accurate estimations
of both change in precipitation and its spatial distribution.

The modeled snowmelt and rain runoff at the catchment
outlet is greatest during the monsoon and lowest during win-
ter (Fig. 9). Peak snowmelt and rain runoff occur in June and
July respectively. The snowmelt season starts in March when
temperatures and insolation are rising and continues until Oc-
tober. Snowmelt runoff contributes most to total runoff dur-
ing pre-monsoon and early-monsoon (March–June), which is
in agreement with Bookhagen and Burbank (2010). Valida-
tion of the simulated runoff with observed runoff was impos-
sible, because (i) there were no reliable runoff data available
for the study period, as there was no reliable rating curve, and
(ii) the model focusses on rain and snowmelt runoff; how-
ever, glacier runoff and delay of runoff due to groundwater
and glacier storage is not incorporated in the model structure.
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The climate sensitivity of snowmelt and rain runoff is
shown in Fig. 9. All climate sensitivity tests show an in-
crease in snowmelt runoff from October to May. In contrast,
snowmelt runoff decreases from June to September. Higher
temperatures result in more snowmelt and less snowfall dur-
ing winter and an early melt season which leads to a shift
in the peak of snowmelt runoff. In other mountain regions
similar changes in runoff patterns appear. Several studies in
the Alps show that the peak in snowmelt runoff shifts from
summer to late spring (Bavay et al., 2009, 2013; Kobierska et
al., 2013). Immerzeel et al. (2009) showed that in the upper
Indus Basin, the peak in snowmelt runoff appears 1 month
earlier by 2071–2100 as result of an increase in temperature
and precipitation. However, Immerzeel et al. (2012) showed
that total snowmelt runoff remains more or less constant un-
der positive temperature and precipitation trends in the upper
part of the Langtang catchment. In their study snowmelt on
glaciers is not defined as snowmelt runoff and is therefore a
minor component of total runoff, leading to different results.

For the wet climate sensitivity tests, total runoff (i.e., the
sum of snowmelt and rain runoff) increases throughout the
year. The decrease in melt runoff during the late melt season
is compensated by the increase in rain runoff as there is more
precipitation. The future hydrology of the central Himalayas
largely depends on precipitation changes, as it is dominated
by rainfall runoff during the monsoon (Lutz et al., 2014). As
we perturb the model with a percentage change in precipita-
tion that is constant through the year, the absolute change in
precipitation is greater in the monsoon than in winter. For
climate sensitivity tests with decreased precipitation, total
runoff from June to September decreases, but from October
to May it increases as a result of increased snowmelt. Esti-
mates of seasonal changes in precipitation are thus critical
for determining whether rain and snowmelt runoff increases
or decreases during monsoon.

4 Conclusions

Remotely sensed snow cover, in situ observations and a mod-
ified seNorge snow model were combined to estimate (cli-
mate sensitivity of) SWE and snowmelt runoff in the Lang-
tang catchment. Validation of remotely sensed snow cover
(Landsat 8 and MOD10A2 snow maps) shows high accura-
cies (85.7 and 83.1 % respectively) against in situ snow ob-
servations provided by surface temperature and snow depth
measurements. Data assimilation of MOD10A2 snow cover
and snow depth measurements using an EnKF proved to be
successful for obtaining optimal model parameter values. In-
dependent validations of simulated snow depth and snow
cover against snow depth measurements and Landsat 8 snow
cover show improvement after assimilation of snow depth
and snow cover compared to results before data assimila-
tion. The applied methodology of simultaneous assimilation
of snow cover and snow depth allows for the calibration of

important snow parameters and validation of the snow depth
rather than snow cover alone. This opens up new possibili-
ties for future snow assessments and sensitivity studies in the
Himalayas.

The spatial distribution of SWE averaged over the simula-
tion period (January 2013–September 2014) shows a strong
gradient of increasing SWE with increasing elevation. In ad-
dition, the SWE is considerably higher in the southeastern
part of the catchment than the northeastern part of the catch-
ment as a result of the spatial and temporal distribution of
precipitation.

Finally the climate sensitivity study revealed that
snowmelt runoff increases in winter and the early melt season
(December–May) and decreases during the late melt season
(June–September) as a result of the earlier onset of snowmelt
due to increasing temperature. There is a strong relative de-
crease in SWE in the valley with increasing temperature due
to more snowmelt and less precipitation as snow. At higher
elevations an increase in precipitation partly compensates for
increased melt due to higher temperatures. The compensat-
ing effect of precipitation emphasizes the importance and
need for the accurate prediction of change in the spatial and
temporal distribution of precipitation.
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