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Abstract. As the melt season progresses, sea ice in the Arctic
often becomes permeable enough to allow for nearly com-
plete drainage of meltwater that has collected on the ice sur-
face. Melt ponds that remain after drainage are hydraulically
connected to the ocean and correspond to regions of sea ice
whose surface is below sea level. We present a simple model
for the evolution of melt pond coverage on such permeable
sea ice floes in which we allow for spatially varying ice melt
rates and assume the whole floe is in hydrostatic balance.
The model is represented by two simple ordinary differential
equations, where the rate of change of pond coverage de-
pends on the pond coverage. All the physical parameters of
the system are summarized by four strengths that control the
relative importance of the terms in the equations. The model
both fits observations and allows us to understand the behav-
ior of melt ponds in a way that is often not possible with more
complex models. Examples of insights we can gain from the
model are that (1) the pond growth rate is more sensitive to
changes in bare sea ice albedo than changes in pond albedo,
(2) ponds grow slower on smoother ice, and (3) ponds re-
spond strongest to freeboard sinking on first-year ice and
sidewall melting on multiyear ice. We also show that under
a global warming scenario, pond coverage would increase,
decreasing the overall ice albedo and leading to ice thinning
that is likely comparable to thinning due to direct forcing.
Since melt pond coverage is one of the key parameters con-
trolling the albedo of sea ice, understanding the mechanisms
that control the distribution of pond coverage will help im-
prove large-scale model parameterizations and sea ice fore-
casts in a warming climate.

1 Introduction

Over the past 40 years, Arctic summer sea ice extent has re-
duced by 50 %, making it one of the most sensitive indica-
tors of man-made climate change (Serreze and Stroeve, 2015;
Stroeve et al., 2007; Perovich and Richter-Menge, 2009).
This rapid decrease is at least partially due to the ice-albedo
feedback (Zhang et al., 2008; Screen and Simmonds, 2010;
Perovich et al., 2007). Moreover, if the ice-albedo feedback
is strong enough it could lead to instabilities and abrupt
changes in ice coverage in the future (North, 1984; Holland
et al., 2006; Eisenman and Wettlaufer, 2008; Abbot et al.,
2011). The albedo of ice is significantly reduced by the pres-
ence of melt ponds on its surface (Eicken et al., 2004; Per-
ovich and Polashenski, 2012; Yackel et al., 2000). Therefore,
understanding the evolution of melt ponds is essential for un-
derstanding the ice-albedo feedback and, consequently, the
evolution of Arctic sea ice cover in a warming world. This
means that accurate melt pond parameterizations must be in-
corporated into global climate models (GCMs) to improve
their sea ice forecasts (Flocco et al., 2010; Holland et al.,
2012; Pedersen et al., 2009). The main difficulties with in-
cluding accurate melt pond parameterizations in large-scale
models are that pond evolution is nonlinear and that it is the
result of a variety of different physical processes operating
on a range of length and time scales. For these reasons, it is
important to understand the mechanisms that drive the evo-
lution of melt ponds.

Typically, the evolution of pond coverage on first-year ice
proceeds in fairly consistent stages (Polashenski et al., 2012;
Perovich et al., 2003; Landy et al., 2014; Webster et al.,
2015). First the ponds grow quickly while the ice is imper-
meable. Next they drain quickly and pond coverage shrinks
as the ice transitions from impermeable to permeable. Then
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the ponds grow slowly while the ice is permeable and pond
water remains at sea level. Finally, the ponds either refreeze
or the floe breaks up. The stage when ice is highly permeable
is typically the longest, often longer than the first two stages
combined. This stage is particularly suitable to model, since
the ponds can be assumed to be at sea level and hydraulically
connected to the ocean. On multiyear ice, ponds also experi-
ence a growth and a drainage stage, but often do not drain to
sea level. On some occasions, however, ponds on multiyear
ice can drain to sea level as well.

In this paper we will present a simple “0-D” model for the
evolution of melt pond coverage on sea ice floes. We will
assume that ice is permeable, ponds are at sea level and hy-
draulically connected to the ocean, the whole ice floe is in
hydrostatic balance, and different points on the ice surface
may melt at different rates. The purpose of our model is (1) to
clarify the roles in the evolution of pond coverage played by
energy fluxes, the ice thickness, bulk ice density, ice rough-
ness, and initial pond coverage; (2) to provide a simple, yet
accurate, way to estimate the pond coverage as a function of
time; (3) to understand the behavior of melt ponds under gen-
eral environmental conditions; and (4) to investigate different
types of qualitative behavior that can arise from differential
melting and maintaining hydrostatic balance.

Skyllingstad et al. (2009) also describe pond growth on
permeable ice, but they include only pond growth by lateral
melt of pond walls. This contrasts with our model, which
includes pond growth by vertical changes of the topogra-
phy. Our models are different, but complementary, and we
will draw parallels between our two models when discussing
the possibility of lateral melt. Aside from Skyllingstad et al.
(2009), previous melt pond modeling efforts include works
by Taylor and Feltham (2004), Lüthje et al. (2006), Scott
and Feltham (2010), and Flocco and Feltham (2007), who
all created comprehensive models that allowed for more re-
alistic representations of physical processes such as heat and
salt balance, and meltwater routing and drainage. The advan-
tage of our model is its simplicity, which makes it possible to
clarify the roles of each of the physical parameters involved.

This paper is organized in the following way. In Sect. 2
we build a simple model for the evolution of pond coverage.
In Sect. 3, we compare the model to observations. In Sect. 4
we discuss realistic values of physical parameters and solve
the model numerically. In Sect. 5 we assess the impacts of
sea ice roughness and develop a simple parameterization to
estimate mean pond coverage after a certain amount of time
without solving the model. In Sect. 6 we analyze the model
analytically to gain a better understanding of the factors in-
fluencing pond evolution. In Sect. 7 we discuss lateral melt
and internal melt combined with effect of density variations.
Finally in Sect. 8 we summarize our results and conclude.
In Appendices A, B, C, and D we discuss some of the more
technical aspects of our model.

2 Building the simple 0-D model

In this section, we build the model for the evolution of melt
pond coverage and then solve it using realistic physical pa-
rameters. Before we proceed to build the quantitative model,
we will first state the assumptions and discuss the physical
mechanisms driving pond evolution.

2.1 Assumptions of the model

Our model focuses on the stage of pond evolution when ice
is highly permeable and all the meltwater created can be
quickly removed to the ocean. The beginning of this stage
can be identified as the point in time when the meltwater on
the ice surface has drained to sea level, such that the remain-
ing ponds correspond to places on the ice surface that are
below sea level. We will assume that from this point on, the
ponds are hydraulically connected with the ocean, and the
only way for pond coverage to increase is for the points on
the ice surface which were above sea level to sink or melt
below sea level. In reality, ponds can also grow through hori-
zontal melting of their sidewalls. As some observations sug-
gest that this type of growth is small at least on first-year ice
(Polashenski et al., 2012; Landy et al., 2014), we neglect it
(see Sect. 7.1 for further discussion). Furthermore, we will
assume that all the melt occurs at the surface or the bot-
tom of the ice. We thereby neglect the possibility of internal
melt. We will also assume that ice has a uniform bulk density
throughout the vertical column, and we discuss the effects of
vertical nonuniformity in bulk density together with effects
of internal melt in Sect. 7.2. Finally, we will assume that the
entire ice floe is in hydrostatic balance.

The main goal of our model is to determine the fraction of
the ice surface above sea level that falls below sea level after
some time. Therefore, we focus on the vertical displacements
of points on the surface of the ice in response to melt. To this
end, we define the ice topography, s(r), as the elevation of
the ice surface above sea level at the point r , and we define
melt ponds as those regions where s(r) < 0. There are two
main reasons why the topography might change in response
to ice melt:

1. First, the topography at a point r at the surface changes
when ice at that point melts (Fig. 1a). Here, the rate of
change of topography at a point depends only on lo-
cal characteristics of that particular point. For this rea-
son, we will call this type of motion “local.” Points on
the surface that melt locally move “downwards,” i.e., to
lower elevations above sea level.

2. Second, in order to maintain hydrostatic balance, the en-
tire ice surface can shift up or down in response to mass
being removed above or below sea level. Since we are
assuming that the entire ice floe is in hydrostatic bal-
ance, melting any region of ice moves the entire floe as
a rigid body (Fig. 1b). For this reason, we will call this
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P. Popović and D. Abbot: Melt pond coverage on permeable Arctic sea ice 1151

Figure 1. (a) Local displacement represents the movement of a
point on the ice surface as a result of ice melting at that particular
point. It is a function only of local ice characteristics at that point.
For both local and hydrostatic displacements the positive direction
is defined as upwards. (b) Rigid body displacement represents the
motion of a floe as a whole in an effort to maintain hydrostatic bal-
ance because melting removes mass above or below sea level. Melt-
ing above sea level induces an upward rigid body motion of the floe,
whereas melting below sea level induces a downward motion.

type of motion the “rigid body” motion. Melting above
sea level induces an upward rigid body motion, whereas
melting below sea level induces a downward rigid body
motion. An ice floe is not a rigid body, but up to its flex-
ural wavelength (roughly 30 m on 1.5 m thick ice) we
can approximate it as such. As the flexural wavelength
is larger than the typical scale of melt ponds (roughly
10 m), the rigid body approximation is likely good.

At each point on the ice surface the change in elevation
above sea level can be calculated as the sum of these two
contributions.

In our model, ponds grow in two ways, “freeboard sink-
ing” and “enhanced melting”:

1. Freeboard sinking represents the average change in free-
board height (average height above sea level of bare
ice). In this way the topography of ice above sea level
remains unchanged. Freeboard sinking should not be
confused with rigid body motion: the average freeboard
height always decreases as a response to ice thinning,
whereas the rigid body motion can point both upward
and downward depending on whether mass is lost above

or below sea level. Both rigid body motion and average
local melting contribute to freeboard sinking.

2. Enhanced melting represents the change in the shape
of the topography without changing its average height.
Ponds can grow in this way if some regions melt faster
than average. Therefore, a positive deviation in the local
melt rate can grow ponds. Conversely, a negative devia-
tion in the local melt rate can slow down or even reverse
pond growth. Pond growth only occurs due to topogra-
phy changes near sea level. Therefore, deviations from
the mean melt rate for points high above the sea level
do not influence pond evolution since these points are
correlated with points close to sea level only through
hydrostatic adjustment, which is determined by the av-
erage melt rates rather than the deviations from the av-
erage.

2.2 Equation for the evolution of topography

We now proceed to build the quantitative model of pond evo-
lution. Following the above ideas, we divide the total rate of
change of vertical position of the point r on the surface of
the ice, ds

dt (r), into a contribution from rigid body motion,
dsrigid body

dt , and a contribution from local melting, dsloc
dt (r):

ds
dt
(r)=

dsrigid body

dt
+

dsloc

dt
(r). (1)

Ice above sea level (asl) must hydrostatically balance ice
below sea level (bsl). We can write this hydrostatic balance
as

masl =
ρw− ρi

ρi
mbsl, (2)

where masl and mbsl represent the mass of ice above and
below sea level, and ρw and ρi represent the densities of
sea water and pure ice. Throughout the paper we use ρw =

1025 kg m−3 and ρi = 916 kg m−3.
The mass above and below sea level can change either be-

cause the ice melts or because the floe moves as a rigid body,
changing the proportion of ice above and below sea level.
Therefore, differentiating Eq. (2) and splitting into melt and
rigid body contributions, we find

dmmelt
asl + dmrigid body

asl =
ρw− ρi

ρw

[
dmmelt

bsl + dmrigid body
bsl

]
, (3)

where dmmelt/rigid body
asl/bsl represents changes in mass above and

below sea level due to either ice melting or the entire floe
floating up or down.

The mass melted above and below sea level after some
time dt is

dmmelt
asl =−Abi

F bi

l
dt, (4a)
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dmmelt
bsl =−Amp

Fmp

l
dt −A

F bot

l
dt, (4b)

where l = 334 kJ kg−1 is the latent heat of melting, F bi is the
total energy flux used for melting bare ice averaged over all
bare ice, Fmp is the total energy flux used for melting ponded
ice averaged over ponded ice, and F bot is the total energy
flux used for melting the ice bottom averaged over the ice
bottom. Abi, Amp, and A are the area of bare ice, the area of
melt ponds, and the area of the entire floe, respectively.

Since floating up or down does not change the total mass of
the ice, mass changes above and below sea level due to rigid
body motion are equal with an opposite sign, dmrigid body

asl =

−dmrigid body
bsl . We can express dmrigid body in terms of rigid

body displacement of the floe as

dmrigid body
asl = ρbAbidsrigid body, (5a)

dmrigid body
bsl =−ρbAbidsrigid body, (5b)

where ρb is the bulk ice density. This is the density of sea
ice once all the brine has drained and is always less than ρi.
We assume it to be uniform throughout the vertical ice col-
umn, but we discuss the effects of vertical variations in ρb in
Sect. 7.2.

Substituting Eqs. (4) and (5) into Eq. (3), solving for
dsrigid body, and differentiating with respect to time, we find
the rate of change of surface topography due to rigid body
motion to be

dsrigid body

dt
=

[
ρi

ρw

F bi

lρb

]
−

[
ρw− ρi

ρw

Amp

Abi

Fmp

lρb

]

−

[
ρw− ρi

ρw

A

Abi

F bot

lρb

]
. (6)

The three terms in large square brackets correspond to to-
pography change due to bare ice melting, ponded ice melting,
and ice bottom melting. Rigid body motion depends only on
spatially averaged energy fluxes, which in turn depend on
parameters such as the average insolation on the floe, the av-
erage albedo, and the average longwave, sensible, latent, and
bottom heat fluxes. If bare and ponded ice melt only from en-
ergy absorbed by the upper surface of the ice, the fluxes F bi
and Fmp can also be written in terms of albedo as

F bi = (1−αbi)Fsol+Fr, (7)

Fmp = (1−αmp)Fsol+Fr, (8)

where αbi and αmp are the average albedos of bare and
ponded ice, Fsol is the solar flux, and Fr is equal to the sum of
net longwave, net sensible, and net latent heat fluxes. This pa-
rameterization neglects light transmission and assumes that
all of the energy is deposited in the surface. Much of the
variation in albedo of ponded ice is due to the fact that the
pond bottom is partially transparent, and energy is deposited

in the ocean instead of directly in the ice. However, this does
not make much difference in our model since the energy de-
posited in the ocean is likely used for melting ice below sea
level anyway.

Local displacement, dsloc, quantifies how much the ice sur-
face topography changes as a result of local melt. We can de-
termine the local melt rate from Fsurf(r), the flux of energy
used for melting the ice surface at a point r:

dsloc

dt
(r)=−

Fsurf(r)

lρb
, (9)

where the positive direction is defined as upwards. The lo-
cal flux depends on parameters such as the local albedo, the
local insolation, the local longwave, sensible and latent heat
fluxes, and the angle between ice and incoming radiation at
that point.

The flux Fsurf(r) averaged over all the points on the sur-
face of the ice above sea level equals F bi:

< Fsurf(r) >= F bi, (10)

where < .. . > represents averaging over all the points on
bare ice. For this reason, we will parameterize the rate of
local melting as

dsloc

dt
(r)=−k(r)

F bi

lρb
, (11)

where k(r) is a nondimensional number that quantifies the
deviation of the melt rate at the point r from the mean melt
rate of the bare ice surface, which depends on the detailed
conditions of ice and its environment. The parameter k could
be either greater than or less than 1. Here we will take k to be
constant in time, but in reality it need not be. Finally, accord-
ing to Eq. (1) we add Eqs. (6) and (11) to get the equation for
the evolution of the bare ice topography. We express this in
terms of melt pond fraction, x ≡ Amp

A
:

ds
dt
(r)=−

[
(k(r)− 1)

F bi

lρb

]

−

[
ρw− ρi

ρw

1
lρb

(
F bi+

x

1− x
Fmp+

1
1− x

F bot

)]
. (12)

Here, we split the equation into two terms, enclosed by the
square brackets. The first term represents the local deviation
from the average surface melt rate, which changes the general
shape of the topography while preserving its average height
above sea level. We identify this term with enhanced melt-
ing. The second term represents a global shift of the average
elevation above sea level due to freeboard sinking.

In this way, the topographic evolution equation can be split
into two terms, enhanced melting and freeboard sinking:
ds
dt
=

dsem

dt
+

dsfs
dt
, (13)

where dsem
dt and dsfs

dt are contributions from enhanced melting
and freeboard sinking, and they correspond to the first and
second term of Eq. (12).
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2.3 Model for the evolution of pond coverage

We now need to relate the vertical displacements near the sea
level to the change in area of the melt ponds. To this end we
define the hypsographic curve, s(xh), which relates the ele-
vation above sea level, s, to the percent of ice surface below
that elevation, xh (Fig. 2). Such curves have been measured
and reported on several occasions (e.g., Fig. 8 of Eicken et
al., 2004, or Fig. 8 of Landy et al., 2014). If the ice is highly
permeable, the melt pond fraction, x, can be inferred from
a hypsographic curve as the intersection of sea level with
the curve. Since ponds are hydraulically connected with the
ocean, the average freeboard height of bare ice, h, depends
on the pond fraction. The average freeboard height, h, can
be expressed in terms of the ice thickness H and the pond
fraction as

h=
ρw− ρi

ρw

H

1− x
. (14)

Here, the average freeboard height is defined as the eleva-
tion of the ice surface above sea level averaged over bare ice.
For two ice floes of the same thickness, the one with higher
pond coverage will also need to have a higher average free-
board in order to maintain hydrostatic balance.

The above sea level part of every measured hypsographic
curve we tested can be fit relatively well with a tangent func-
tion (Fig. 2a, red line). We will assume that this fit holds for
a wide range of different sea ice floes and use it to initial-
ize our model with different physical parameters. We give
the exact form of this function in Appendix A (Eq. A1). To
get a hypsographic curve for a particular initial pond frac-
tion, xi , and ice thickness, H , we set it to zero at the initial
pond coverage, s(xh = xi)= 0, and rescale it vertically to get
a freeboard that hydrostatically balances the floe. The topog-
raphy below sea level is not important for the evolution of
pond coverage if the pond coverage grows, and we replace it
with a straight line.

We show several curves for different initial ice thickness
and initial pond coverage in Fig. 2b and c. We note that the
initial pond fraction, xi , corresponds to the pond fraction
when ice first becomes permeable. Once we choose xi and
H , the tangent function Eq. (A1) has only two unconstrained
parameters, p1 and p2, that determine the exact shape of
the curve. Knowing additional physical parameters, such as
ice roughness, we can constrain additional parameters of this
curve. Throughout this paper we will mostly use p1 and p2
that fit the measurements of the hypsographic curve made
by Landy et al. (2014) for 25 June 2011 or the measure-
ments made during the SHEBA mission along the topogra-
phy profile “1” on 10 July 1998. However, when examining
the effects of sea ice roughness, we will vary these param-
eters to get curves of different shape. Several examples of
hypsographic with different p1 and p2 are shown in Fig. 2d.

In the case of pure freeboard sinking the overall shape of
the hypsographic curve does not change as the ice melts. In-

Figure 2. Hypsographic curves showing the percentage of the sea
ice surface that is lower than a particular elevation. Pond coverage
on highly permeable sea ice can be inferred from here as the in-
tersection of sea level (horizontal blue line) with the hypsographic
curve. (a) A hypsographic curve measured by Landy et al. (2014)
on 25 June 2011 (solid black line) and a hypsographic curve mea-
sured during SHEBA along a 100 m long “topography profile 1”
on 10 July 1998 (black dashed line). The vertical dashed lines rep-
resent the pond coverage, assuming that ice is permeable. The red
line represents a fit to the part of the hypsographic curve above sea
level with a tangent function, Eq. (A1). (b) Adjusted hypsographic
curves for different initial pond coverage and the same ice thick-
ness. (c) Adjusted hypsographic curves for the same initial pond
coverage and different ice thickness. (d) Hypsographic curves for
different shape parameters, p1 and p2, defined and discussed in Ap-
pendix A, Eq. (A1). Parameter p1 controls the amount of curvature,
while p2 controls the position of the inflection point of the tangent
function.

stead the whole curve is shifted following a displacement of
dsfs (Fig. 3a). We can calculate the resulting change in pond
coverage as

dx
dt
=

dxh
ds
(x)

dsfs
dt
, (15)

where dsfs is the vertical displacement of the bare ice topog-
raphy due to freeboard sinking (as determined by the second
term in Eq. 12), and dxh

ds (x) is the change in pond fraction for
a vertical shift of the ice surface of dsfs when the pond frac-
tion is equal to x. It is equal to the reciprocal of the derivative
of the hypsographic curve, s(xh), evaluated at xh = x. Sub-
stituting dsfs

dt from Eq. (12) we find

dx
dt
=

dx̂h
dŝ
(x)

[
Sbi+ Smp

x̂

1̂− x
+ Sbot

1

1̂− x

]
, (16)

where x̂ ≡ x
xi

and 1̂− x ≡ 1−x
1−xi

are the pond and bare ice
fractions normalized by the initial pond and bare ice frac-
tions, and dx̂h

dŝ (x)≡
h

1−xi
dxh
ds (x) is the nondimensional slope
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Figure 3. Explanation of different models of pond growth. Models
evolve a hypsographic curve, s(xh), above sea level to find the pond
coverage evolution. Evolution of the hypsographic curve below sea
level is not relevant for pond growth and, apart from the 1-D model,
is not captured well in these models. (a) Freeboard sinking shifts
the entire hypsographic curve downward following a displacement
of dsfs. (b) Enhanced melting acts on a constant ice fraction, δ,
and there is no freeboard sinking. The hypsographic curve changes
only between xh = x and xh = x+δ and remains unchanged other-
wise. After a time1t = s(x+δ)

dsem/dt
pond coverage grows by δ. The 0-D

model, Eq. (26), assumes that the total pond evolution is the sum of
pond evolution due to such enhanced melting and freeboard sinking
(panel a). (c) The 1-D model prescribes a melt rate at each point
on the hypsographic curve as a function of height above sea level,
ds
dt (s). (d) A simplified model that assumes both freeboard sink-
ing and enhanced melting (Appendix B). Enhanced melting occurs
only below height 1s. After some time, the fraction of ice affected
by enhanced melting, δ, becomes constant, meaning that a constant
fraction model (panel b) and a constant height model are equivalent
if δ and 1s are related appropriately.

of the hypsographic curve. We have defined the strengths
of pond growth by freeboard sinking due to melting bare,
ponded, and ice bottom, Sbi, Smp, and Sbot, as

Sbi ≡
(1− xi)2F bi

Hlρb
, (17a)

Smp ≡
(1− xi)xiFmp

Hlρb
, (17b)

Sbot ≡
(1− xi)F bot

Hlρb
. (17c)

The nondimensional factors x̂, 1̂− x, and dx̂h
dŝ (x) are cho-

sen to be of the order unity, so that Sbi, Smp, and Sbot control
the strengths of pond growth by melting bare ice, melting

ponded ice, and melting ice bottom. The reciprocals of the
strengths represent the timescales of the growth modes.

The set of parameters needed to describe pure freeboard
sinking can be further reduced by rewriting Eq. (16) as

dx
dt
=

dx̂h
dŝ
(x)

[
S1

x̂

1̂− x
+ S2

1

1̂− x

]
, (18)

where S1 ≡ Smp−xiSbi/(1−xi) and S2 ≡ Sbot+Sbi/(1−xi)
represent a minimal set of parameters needed to describe
pure freeboard sinking. However, these parameters do not
have a clear physical interpretation, and we will henceforth
focus only on Sbi, Smp, and Sbot.

Next we need to consider the contribution from enhanced
melting. Before doing so we need to make some assumptions
about the nature of enhanced melt. There are multiple phys-
ical processes that can cause the melt rate to deviate from
the mean. One process that stands out as being particularly
important is albedo decrease due to ice wetting: ice close to
sea level will likely be wet and therefore have a lower albedo
compared to ice higher up. The deviation from the mean melt
rate in this case depends primarily on the height above sea
level. Another potential contribution to height-dependent en-
hanced melt may effectively come from random fluctuations
in the melt rate around the average: ice near the sea level has
a higher probability of falling below sea level due to random
fluctuations than ice higher up. After falling below sea level,
ice becomes ponded, melts faster, and is unable to return to
its previous position. Other processes, such as lateral melt,
may not depend on height above sea level, but for now we
neglect this possibility (see Sect. 7.1 for discussion).

Because of the processes described above, we will assume
that the deviation from the mean melt rate, k(r)−1, depends
only on height above sea level, s. In this scenario, we need
to consider enhanced melting together with freeboard sink-
ing, as freeboard sinking constantly supplies new ice to low
elevations to be affected by enhanced melting. Effects of en-
hanced melting and freeboard sinking can be approximately
separated if, instead of height dependence, enhanced melt-
ing is constrained to act on a fixed fraction of bare ice. In
this case, a constant fraction of bare ice that would experi-
ence enhanced melting would evolve, at least approximately,
independently of freeboard sinking.

Therefore, we will consider two cases of enhanced melt-
ing. Firstly, we will consider a height-dependent enhanced
melting. In particular, we will assume that k(0< s < 1s)≡
k and k(s > 1s)≡ 1, where1s is a height above which there
is no enhanced melting and below which enhanced melt-
ing is constant k > 1. This is the case we ultimately wish
to describe. We describe a potential model for pond growth
under this assumption in Appendix B and Fig. 3d. How-
ever, from a practical viewpoint, it is simpler to consider en-
hanced melting which acts upon a fixed fraction of bare ice.
In this case, we will assume that k(x < xh < x+ δ)≡ k and
k(xh > x+ δ)≡ 1, where δ is a fraction of ice affected by
enhanced melting (Fig. 3b). In Appendix B, we show that,
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if δ is appropriately chosen, a height-dependent model and a
fixed fraction model become equivalent. Therefore, we will
first solve a model assuming a fixed δ and no freeboard sink-
ing and then relate it to a fixed 1s model by choosing the
appropriate δ.

We note that the assumption that k(r)= 1 high above the
sea level and k(r) > 1 near the sea level is strictly not true
since averaged over all of bare ice k(r) needs to equal 1.
However, it is approximately true if 1s or δ are small, such
that the area where k(r) 6= 1 is small compared to the total
area of bare ice. Also, we have assumed k(r)= 1 high above
the sea level without loss of generality, since deviations from
the mean melt rate high above the sea level are not important,
as only ice close to sea level may become ponded.

Now we proceed to consider the case of “pure enhanced
melting” that assumes a fixed fraction of the ice, δ, melts,
and there is no freeboard sinking (Fig. 3b). If there is no to-
pographic variation above sea level, and the entire ice floe
above sea level has the same height, h, the pond coverage
would grow by δ after a time 1t = h

dsem/dt
, where dsem/dt

is the rate of change of topography due to enhanced melting
as determined by the first term of Eq. (12). Therefore, the
pond growth rate in this case would be 1x

1t
=

δ
h

dsem
dt . If there

is non-negligible topography above sea level described by the
hypsographic curve, the time 1t it takes for pond coverage
to grow by δ would be 1t = s(xh=x+δ)

dsem/dt
. Here, s(xh = x+ δ)

is the original hypsographic curve evaluated at xh = x+ δ.
We will assume this expression generally holds for enhanced
melting. Thus, we arrive at the expression for pond growth
due to pure enhanced melting with fixed δ:

dx
dt
=

δ

s(x+ δ)

dsem

dt
. (19)

If δ is small compared to the variation in the hypsographic
curve, we can substitute s(x+ δ) with s(x). This is only not
justified near the beginning of the melt, when s(x)≈ 0. Sub-
stituting dsem

dt from Eq. (12) we find

dx
dt
= Sem

1
ŝ(x+ δ)

, (20)

where ŝ(x)≡
s(x)
h

is the nondimensional hypsographic
curve, and the strength of the enhanced melting, Sem, is de-
fined as

Sem ≡
ρw

ρw− ρi

(1− xi)δ(k− 1)F bi

Hlρb
. (21)

Ultimately, however, our goal was to describe the height-
dependent enhanced melting. In Appendix B, we showed
that such a model can be approximated with a fixed fraction
model, if we appropriately relate δ and 1s. Here we simply
state the result:

δ =
ρw

ρw− ρi

21s(1− xi)2

3H
(

1+ dsem
dsfs

) . (22)

Here, dsem
dsfs

represents the ratio of the topographic rate of
change due to enhanced melting to freeboard sinking and is
given by

dsem

dsfs
=

ρw

ρw− ρi

|F bi|(k− 1)

|F bi| +
xi

1−xi
|Fmp| +

1
1−xi
|F bot|

, (23)

where |F | are the representative values of energy fluxes,
e.g., their time averages. Therefore, the strength of height-
dependent enhanced melting becomes

Sem =

(
ρw

ρw− ρi

)2 21s(1− xi)3(k− 1)F bi

3H 2lρb

(
1+ dsem

dsfs

) . (24)

We have made a number of assumptions in deriving the
expression for enhanced melting. Below we compare this
model to a more complicated “1-D” model and show that
all these assumptions are justified. We also show that if the
function describing the local melt rate, k(s), has a nontriv-
ial dependence on height above sea level, parameter Sem is
better replaced with a parameter:

< Sem >≡

(
ρw

ρw− ρi

)2 2(1− xi)3F bi

3H 2lρb

∞∫
0

k(s)− 1

1+ dsem
dsfs

(s)
ds. (25)

In this way, we have separated the effects of freeboard
sinking and enhanced melting. Finally, we will assume that
contributions from freeboard sinking and enhanced melting
can be added independently. Therefore, we solve Eq. (16)
for pure freeboard sinking and Eq. (20) for enhanced melt-
ing independently, and we add them together to get the full
evolution of pond coverage, x(t):

x(t)= xfs(t)+ xem(t)− xi, (26)

where xfs(t) and xem(t) are solutions to Eqs. (16) and (20),
both forced using the same parameters and initialized with
the same initial pond fraction xi . This concludes the 0-D
model.

Equation (26) represents a sum of solutions to two simple
ordinary differential equations, in which the rate of change
of pond fraction depends on the pond fraction. Here, we have
reduced the number of parameters from the original 10 (H ,
xi , ρb, F bot, Fsol, Fr, αbi, αmp, k, and 1s) to 4 (Sbi, Smp,
Sbot, and Sem). The strengths of freeboard sinking, Sbi, Smp,
and Sbot, depend only on the parameters that are available
in GCM simulations and are relatively easily measured in
observational studies. The enhanced melting strength, Sem,
however, also depends on the difficult-to-measure parame-
ters k and 1s that describe the melt rate near the sea level
and may also have contributions from processes that are
not height dependent. Furthermore, as we discuss below, ice
roughness can also play an important role in pond evolu-
tion. With reliable constraints on these parameters, our model
would be a useful parameterization in GCMs for pond growth
after ice becomes permeable.
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Figure 4. (a) A comparison between pond evolution in the 0-D model and the 1-D model. The black curve represents the 0-D model. The
blue, green, and red curves represent the 1-D model for different functions k(s) shown in panel (b). These different functions were chosen
such that the integral parameter < Sem > (Eq. 25) is the same as for the 0-D model. The yellow curve represents the 1-D model where
enhanced melting acts on a constant fraction of bare ice, δ, chosen according to Eq. (22). The magenta curve represents the 1-D model
with pond albedo varying with depth. There is significant agreement between all of the curves, suggesting that the simplifications made in
the simple model were justified. Since including variable pond albedo does not change the pond evolution significantly, this detail can be
neglected when estimating the pond coverage on permeable ice. (b) The blue, green, and red lines represent functions k(s)− 1 used to run
the 1-D model.

2.4 Testing the model

In order to test the assumptions we made to simplify the
model, we have developed a “1-D” model in which we ex-
plicitly determine pond evolution when both freeboard sink-
ing and enhanced melting are happening simultaneously.
Apart from resolving the melt rates in one dimension, the
underlying assumptions for the 1-D model are essentially the
same as for the simple model. For this reason, we simply
give an outline for this model, without discussing it in much
detail.

In the 1-D model, we evolve the hypsographic curve by
prescribing a melt rate, dsloc, to each point on the hyp-
sographic curve depending on the height above sea level
(Fig. 3c). The hypsographic curve high above sea level melts
at a uniform rate, whereas the hypsographic curve slightly
above sea level melts at an enhanced rate. Parts of the curve
below sea level melt at a uniform rate determined by the flux
used for melting ponded ice, Fmp. Finally, hydrostatic ad-
justment is calculated by finding the ice thickness directly at
each time step and placing the floe in hydrostatic balance.
The evolution of pond coverage obtained from this model is
shown in Fig. 4a. The comparison with the simple 0-D model
is excellent.

The 1-D model allows us some freedom to test the detailed
assumptions of the 0-D model. First, we can test how the
functional form of k(s) affects the pond evolution (Fig. 4b).

The functions k(s) were chosen such that they all have the
same integral parameter < Sem > defined in Eq. (25). Fig-
ure 4a shows that in each of these cases the evolution of pond
coverage proceeds nearly identically. Second, we can test the
difference between an assumption that enhanced melting acts
below a constant height1s and an assumption that enhanced
melting acts on a constant fraction of ice, δ. The yellow line
in Fig. 4a shows that if δ and 1s are chosen according to
Eq. (22), both assumptions yield very similar results. Finally,
we can test the effects of varying pond albedo. In reality pond
albedo decreases as the ponds deepen. We assume a depen-
dence of pond albedo on pond depth reported in Table VII of
Morassutti and Ledrew (1996) for mean broadband albedo.
The magenta line in Fig. 4a shows that allowing for pond
albedo to vary has a negligible effect on pond evolution.

We should note that, when both freeboard sinking and
enhanced melting occur simultaneously, the agreement be-
tween the 0-D model and the 1-D model becomes poor if the
hypsographic curve is convex (e.g., Fig. 2d, blue curve), and
the 0-D model should be used with care. Happily, the mea-
sured hypsographic curves are mostly concave, in which case
the agreement between the two models is excellent.

The Cryosphere, 11, 1149–1172, 2017 www.the-cryosphere.net/11/1149/2017/
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3 A 0-D model can approximate observations well
using realistic parameters

In Fig. 5, we compare the results from our model to obser-
vations made on a 200 m long albedo line during SHEBA
(red line). Ice along the albedo line was level multiyear ice,
but the ponds drained to sea level after some time, which
makes them amenable to our model (Perovich et al., 2003).
The pond coverage along the albedo line dropped to a mini-
mum around the end of June. Therefore, we choose to model
only the period after 1 July. In order to keep the albedo line
pristine, no thickness measurements were made. However,
relatively close to the albedo line, topography measurements
were made along a level multiyear ice profile roughly ev-
ery 10 days. After approximately 10 July, ponds along the
topography profile also drained to sea level. We show the
topography profile pond coverage in blue dots (we have ar-
tificially subtracted 0.05 from the pond coverage to facilitate
comparison with the pond coverage along the albedo line).
The pond coverage both along the topography profile and
along the albedo line follows roughly the same trend, sug-
gesting that the physical parameters driving the pond evolu-
tion in the two places are likely similar. Based on the average
freeboard height, we estimate the ice thickness on 10 July
to be roughly 1.4 m along the topography profile, meaning
that on 1 July ice thickness was around 1.6 m. Therefore,
we assume the same thickness for the ice along the albedo
line and use a hypsographic curve corresponding to the one
measured along the topography profile on 10 July (Fig. 2a,
dashed line). In order to run our model, we use the melt rates
of bare ice, ponded ice, and ice bottom measured directly us-
ing ablation stakes during SHEBA (Perovich et al., 2003).
We choose a realistic ρb = 850 kg m−3 (Timco and Frederk-
ing, 1996). We have no way of directly constraining the pa-
rameters1s and k that control the strength of enhanced melt-
ing. Therefore, we treat Sem as a fitting parameter. Choosing
Sem = 0.22 month−1 fits the observations well by eye. This
value can be obtained using 1s = 15 cm and k = 1.7, which
likely fall at the upper end of the range of reasonable values
for these constants (see Sect. 4 for a discussion on 1s and
k). Such a high value of Sem can be explained by a signifi-
cant contribution from lateral melting.

The full black line in Fig. 5 represents a solution to the
full Eq. (26). The agreement between model and observa-
tion is excellent, with a maximum discrepancy of 3 % pond
coverage at the end of the melt season. The dashed black
line represents the contribution to pond growth due to free-
board sinking, whereas the dotted line corresponds to en-
hanced melting. Almost all pond growth in this case is due
to enhanced melting. This is due to ice topography. On mul-
tiyear ice, meltwater typically collects in depressions formed
by ponds in previous years. The topography created in this
way is highly bimodal, and, after drainage, ponds typically
have steep walls. Bare ice topography, in contrast, is rela-
tively smooth, preventing new pond formation. This is ap-

parent in the hypsographic curve we used. Such a topography
inhibits freeboard sinking, and pond coverage grows mostly
by enhanced melting acting near the pond sidewalls, growing
the existing ponds. In addition to height-dependent enhanced
melting we introduced in the previous section, in this case
there is likely a significant contribution from lateral melting
as well. This contribution helps explain the high value of Sem
we had to choose to get a close agreement between our model
and observations. First-year ice topography, in contrast, per-
mits ample pond growth through freeboard sinking. Observa-
tions suggest that on first-year ice ponds grow primarily due
to freeboard sinking (Polashenski et al., 2012; Landy et al.,
2014).

4 Numerical solutions

We now solve Eq. (26) numerically to gain intuition about the
behavior of our model. We use a set of realistic parameters
we will henceforth refer to as the “default parameters.”

For shortwave, longwave, latent, and sensible heat fluxes,
we use values inferred by Skyllingstad et al. (2009) using
hourly measurements from the SHEBA mission. We use the
bottom heat flux inferred from measurements of ice bottom
ablation during the SHEBA mission (Perovich et al., 2003).
The albedo of bare ice can vary between 0.5 and 0.7 (Hane-
siak et al., 2001), while the albedo of melt ponds can vary be-
tween 0.1 and 0.6, depending on pond depth and conditions
of ice at the pond bottom (Morassutti and Ledrew, 1996; Per-
ovich et al., 1998; Perovich, 1996). Here we prescribe a de-
fault bare ice albedo of 0.55 and a default pond albedo of
0.2. We use a realistic bulk ice density of ρb = 850 kg m−3

(Timco and Frederking, 1996). We use an initial ice thickness
of 1.5 m and use the first-year ice topography measured by
Landy et al. (2014) adjusted for the prescribed ice thickness
and initial pond fraction (usually xi = 0.2). We will assume
enhanced melting is entirely due the albedo dependence on
height above sea level. Some preliminary results based on
field measurements of bare ice albedo on first-year ice sug-
gest that albedo changes from around 0.3 near sea level to
around 0.55 at a height of around 10 cm above sea level, af-
ter which the correlation between albedo and surface eleva-
tion tapers off (Chris Polashenski, personal communication,
2017). Using such an albedo and the average values of short-
wave, longwave, latent, and sensible heat fluxes, we can esti-
mate the rate of melt as a function of height above sea level,
k(s)=

F(s)

F bi
. Using Eq. (25), we can then find the integral pa-

rameter < Sem >. We choose 1s = 6 cm and k = 1.7 to cor-
respond to the same integral parameter. We should note that
there is significant scatter in the data, and measurements cor-
respond to only one study. Therefore, this is a rough estimate
of enhanced melting, but it is likely of the correct order of
magnitude.

Figure 6a shows the solution to Eq. (26) for different ini-
tial conditions. We can see that ponds grow more rapidly
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Figure 5. A comparison between measurements of pond fraction
made during SHEBA along the albedo line (red line), along a to-
pography profile (blue dots), and our model (black line). The blue
dots have been shifted downward by 0.05 to make a more obvious
comparison between albedo line and topography profile trends. The
black dashed line is the contribution to our model from freeboard
sinking and the black dotted line is the contribution from enhanced
melting. Ponds grow almost entirely due to enhanced melting as a
result of the steep topography of multiyear ice.

when the initial pond coverage is lower, and the pond evo-
lution curves cluster together as time progresses. This is be-
cause lower initial pond coverage corresponds to lower initial
freeboard height, making the pond growth more rapid. The
dashed line corresponds to the solution using the fluxes time-
averaged over the 30-day run. The solutions using the aver-
aged fluxes are very similar to the ones using time-varying
fluxes, meaning that daily and even monthly variations in
the forcing have little effect on pond growth. This insensi-
tivity to short timescale variations in the forcing means that
pond coverage evolution may be faithfully represented in the
large-scale models, as it would not be affected by the coarse
timescales of those models. Henceforth, we will use the time-
averaged fluxes.

A larger ice thickness means a higher freeboard. For this
reason, ponds grow more slowly on thicker ice. Because the
pond growth rate is inversely proportional to ice thickness,
pond coverage is more sensitive to variations in ice thickness
when the ice is thin (Fig. 6b). In Fig. 6b we see that a 0.5 m
difference in the initial ice thickness (between a floe 1.5 m
and a floe 2 m thick) can mean a 20 % difference in pond
coverage at the end of the melt season.

Figure 6c shows the dependence of pond coverage on
albedo. A variation of 0.1 in bare ice albedo has a much
larger effect on pond evolution than the same change in pond
albedo. The reason is that melting ponded ice only affects
pond coverage through downward rigid body motion of the
floe, whereas melting bare ice grows the ponds through both

Figure 6. Numerical solutions to Eq. (26) with parameters varied
around the defaults described in the text. (a) Varying initial pond
coverage. Solid lines represent solutions using full time-varying
fluxes, while dashed lines represent solutions using time-averaged
fluxes. The two solutions are very similar, so we subsequently use
only the time-averaged fluxes. (b) Varying ice thickness. Ponds
grow slower on thicker floes. (c) Varying pond and bare ice albedo.
Different colors represent different bare ice albedos, and full, dot-
ted, and dashed lines represent different pond albedos. A change in
bare ice albedo has a much larger effect on pond fraction than the
same change in pond albedo. (d) Varying the1s and k. For k = 0.8,
the ponds shrink. However, pond evolution for k < 1 is not repre-
sented well in our model, so this curve serves only as an illustration.

enhanced melting and freeboard sinking. Furthermore, when
pond coverage is low, rigid body motion due to ponded ice
melting is less efficient than that due to bare ice melting be-
cause it is proportional to melt pond fraction.

The parameters controlling the strength of enhanced melt-
ing are the least constrained parameters in our model. In
Fig. 6d we show the dependence of pond evolution on the
height below which enhanced melting is active, 1s. Explor-
ing a range of realistic values for 1s, 0<1s < 15 cm, we
find that the pond fraction at the end of the melt season can
vary by about 30 %. This difference would be larger if we
chose a smaller ice thickness. The effects of changing k are
relatively small, so long as k is large enough (not shown). For
example, using current parameters, pond coverage evolution
becomes fairly insensitive to k when k > 1.5. Smaller values
of k, however, can significantly impact pond evolution. If k
is sufficiently smaller than 1, Sem can become negative and
the pond coverage can stop growing. In this case, ice near the
sea level melts slowly enough such that an upward rigid body
movement due to melting ice high above sea level pushes the
ice near sea level upwards, preventing pond coverage growth.
The evolution of such a pond coverage cannot be represented
well in our model since the equation for enhanced melting
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Figure 7. Exploring the effects of sea ice roughness. (a) Pond evolution due to pure freeboard sinking for hypsographic curves with different
shape parameters p1 and p2. The x axis shows nondimensional time t̂ = t (Sbi+Smp+Sbot)

1−xi
. Color represents normalized roughness, σ̂ , with

blue colors corresponding to small σ̂ and red colors corresponding to large σ̂ . Thick red solid line represents pond evolution on the measured
first-year ice hypsographic curve, and the thick red dashed line represents pond evolution on the measured multiyear ice hypsographic curve.
All else equal, rougher ice has a larger pond fraction. (b) Pond evolution due to pure enhanced melting for hypsographic curves with different
shapes. The x axis shows nondimensional time t̂ = tSem

1−xi
. Cartoon examples of hypsographic curves and their approximate positions along

the σ̂ axis are also shown.

becomes invalid in this case, and the blue curve in Fig. 6d
serves therefore simply as an illustration.

5 Pond evolution is slower on smoother ice

The evolution of pond coverage in our model depends on
the detailed shape of the hypsographic curve, which is not
captured by the strengths of freeboard sinking and enhanced
melting. As we show below, pond coverage is sensitive to
such details and in particular to ice roughness. Below we
will introduce the “effective strengths”, S∗, which approxi-
mately capture the effects of roughness and allow us to esti-
mate mean pond coverage after a period of time. Using effec-
tive strengths, we will demonstrate how multiyear ice topog-
raphy suppresses pond growth by freeboard sinking, while
first-year ice topography permits it.

In the tangent function parameterization, Eq. (A1), the ex-
act shape of the hypsographic curve is determined by param-
eters p1 and p2. Here, we will not discuss these parameters
individually but will rather focus on often measured bare ice
roughness, σ , defined as the standard deviation of surface el-
evation of ice above sea level:

σ ≡

(∫ 1
xi
s2(xh)dxh
1− xi

−h2

) 1
2

. (27)

We will use the nondimensional form of bare ice roughness,
defined as σ̂ ≡ σ

h
. Typically, a concave hypsographic curve

(e.g., Fig. 2d, red curve) will have a small σ̂ , whereas a con-
vex hypsographic curve (e.g., Fig. 2d, blue curve) will have
a high σ̂ .

During the permeable stage, all else equal, ponds will grow
more rapidly on rougher ice, since a larger fraction of ice
is close to sea level. This is not true on impermeable ice,
as meltwater filling deep topographic lows on rough ice will
cover a smaller area relative to the same amount of meltwa-
ter filling shallow topographic lows on smooth ice. For this
reason, the initial pond coverage will likely be smaller on
rougher ice due to a smaller pond coverage during the imper-
meable stage.

Figure 7 shows the pond coverage evolution due to pure
freeboard sinking (Fig. 7a) and pure enhanced melting
(Fig. 7b) for hypsographic curves with different parameters
p1 and p2 and all other parameters kept constant. For each
choice of p1 and p2, we find the normalized bare ice rough-
ness, σ̂ , represented by the color of the curves. Blue colors
correspond to low roughness and red colors to high rough-
ness. Pond evolution on measured topographies (Fig. 2a) is
also shown. We can see that although roughness does not
fully determine the pond evolution, it is a viable proxy for
how pond coverage will evolve, with high roughness curves
typically having a higher average pond coverage.
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We wish to quantify the effect of roughness by its impact
on the mean pond coverage. In particular, we hope to find the
“effective strengths”, S∗(σ̂ ), which include the roughness ef-
fects and allow us to easily estimate the average pond cover-
age after some time t :

< x(t) >≈
1
2
S∗t + xi, (28)

where < x(t) >≡
∫ t

0 x(t)dt
t

. Effective strengths are propor-
tional to strengths of freeboard sinking and enhanced melting
we derived in Sect. 2.3. In general they themselves may de-
pend on time and are independent of time only if pond cover-
age evolution is linear, x(t)= St+xi , in which case S∗ = S,
where S is either Sfs ≡ (Sbi+Smp+Sbot) in the case of free-
board sinking or Sem in case of enhanced melting.

In Appendix C, we describe the procedure to estimate the
effective strengths as functions of nondimensional roughness
and time. Here, we only state the result:

S∗fs ≈
[
1.3σ̂ 2

](
Sbi+ Smp+ Sbot

)
, (29a)

S∗em ≈

[
1+

(
2√
t̂em
−

3
2

)
σ̂

]
Sem, (29b)

where S∗fs is the effective strength of freeboard sinking, S∗em
is the effective strength of enhanced melting, and t̂em ≡

Semt
1−xi

is the nondimensional time of pond evolution due to en-
hanced melting. The terms in square brackets represent the
corrections due to roughness. If both freeboard sinking and
enhanced melting occur simultaneously the total effective
strength is the sum of these two, S∗ = S∗fs+ S

∗
em. Knowing

the effective strengths allows us estimate the mean pond cov-
erage after a period of time without having to run the model.

Roughness has a different effect on freeboard sinking and
enhanced melting. Freeboard sinking is roughly indepen-
dent of time and proportional to the square of nondimen-
sional roughness. Therefore, it is very sensitive to variations
in roughness: doubling the ice roughness roughly quadru-
ples the mean pond coverage due to freeboard sinking after
some time. Enhanced melting depends roughly linearly on
roughness. However, as roughness tends to zero, the effec-
tive strength remains nonzero, S∗em(σ̂ → 0)→ Sem. There-
fore, ponds on smooth ice grow primarily due to enhanced
melting. Effective strength also depends on the nondimen-
sional time, t̂ , and is higher and more sensitive to variations
in roughness early in the melt season.

Multiyear ice topography shown in Fig. 2a, dashed line,
has σ̂ ≈ 0.25 and is significantly smoother than first-year ice
topography shown in Fig. 2a, solid line, which has σ̂ ≈ 0.55.
From Eq. (29) it follows that freeboard sinking on multiyear
ice is roughly 5 times less efficient in growing the ponds than
on first-year ice.

6 Analyzing the 0-D model yields useful insight into
factors influencing the pond evolution

Extracting the dependence of a desired property on physical
parameters and understanding its scaling is the main strength
of our model. These types of relationships would be difficult
to obtain in a more complex model.

The parameters S∗bi, S
∗
mp, S∗bot, and S∗em control the mean

rates of pond growth by melting different regions of ice.
Roughly, they represent the amount of pond growth per unit
time by freeboard sinking due to melting bare ice, freeboard
sinking due to melting ponded ice, freeboard sinking due to
melting ice bottom, and enhanced melting. Knowing these
parameters allows us to estimate mean pond coverage after
a period of time with significant accuracy without having
to run the numerical model. Moreover, analyzing them can
yield useful insight into the behavior of melt ponds under
general circumstances.

We can estimate the change in magnitude of the strength
of each of the growth modes when a physical parameters p
changes by 1p as

1S∗i =
∂S∗i

∂p
1p, (30)

where 1S∗i is the change in magnitude of the effective
strength of the ith growth mode. This equation holds so
long as the change in the physical parameter is not too
large. A change in pond growth rate can then be estimated
as 1S∗ =

∑
i1S

∗

i . Then, using Eq. (28), we can roughly
estimate a change in mean pond fraction, 1< x >, after
some time, 1t , following a change in physical parameter, p,
as 1< x >≈ 1

21S
∗1t . This provides a means to estimate

changes in mean pond coverage under different environmen-
tal conditions.

6.1 Ponds are more sensitive to changes in bare ice
albedo than changes in pond albedo

We will illustrate the use of effective strengths using an ex-
ample where we vary the ice and pond albedos. If the bare
ice albedo changes by1αbi, the change in growth rate would
be roughly

1S∗ =

S∗bi+

ρw−ρi
ρw

(dsem/dsfs)2+ (k− 1)(
1+ dsem

dsfs

)
(k− 1)

S∗em


×
Fsol

F bi
1αbi ≈−0.9

1
month

1αbi. (31)
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If the melt pond albedo changes by 1αmp, the change in
growth rate would be roughly

1S∗ =−

S∗mp+
(ρw− ρi)xi(dsem/dsfs)2Fmp

ρw

(
1+ dsem

dsfs

)
(k− 1)(1− xi)F bi

S∗em


×
Fsol

Fmp
1αmp ≈−0.2

1
month

1αmp. (32)

It follows from these estimates that after a month the mean
pond fraction would differ by roughly 4.5 % for a bare ice
albedo difference of 0.1 and by around 1 % for a pond albedo
difference of 0.1. Therefore, variation in pond albedo affects
pond evolution roughly 5 times less than variation in bare
ice albedo. This explains our observation from Fig. 6c that
pond evolution is much more sensitive to variations in bare
ice albedo than to variations in pond albedo. In this way, we
also extract the dependence of sensitivity on physical param-
eters. A major difference between the two sensitivities is their
dependence on the initial pond coverage: the sensitivity to
pond albedo is proportional to xi , whereas the sensitivity to
bare ice albedo is proportional to 1− xi . In the above ex-
ample we used xi = 0.2, which explains most of the large
difference between the two sensitivities. If the pond cover-
age were higher, variations in the pond albedo could become
more important than variations in bare ice albedo. For exam-
ple, assuming no enhanced melting, the sensitivity to pond
albedo would become greater than the sensitivity to bare ice

albedo at 50 % pond coverage
(
1S∗mp
1S∗bi
=

xi
1−xi

1αmp
1αbi

)
.

6.2 Under global warming, pond feedback could lead
to significant ice thinning

We now use the effective strengths to roughly estimate the
impact of global warming on the pond coverage. At high lat-
itudes, feedbacks due to changes in albedo, the atmospheric
lapse rate, and clouds can amplify the forcing due to global
warming (Holland and Bitz, 2006). For this reason forcing at
high latitudes is generally larger than direct radiative forcing
due to an increase in CO2 concentration. In a global warm-
ing scenario, the pond growth rate would increase because
the ice melts faster but also because ice at the beginning of
the melt would be thinner. We can emulate a global warming
scenario by increasing the flux Fr by a certain amount, 1Fr ,
and by assuming that the initial ice thickness decreases by
1H ≡ ∂H

∂Fr
1Fr , where ∂H

∂Fr
is the ice thinning per 1 W m−2

of warming. Therefore, we split the change in pond growth
rate due to global warming, 1S∗, into a contribution from
direct forcing, 1S∗F , and a contribution from ice thinning,

1S∗H . Using the above formalism, we find

1S∗F ≡
∑
i

∂S∗i

∂Fr
1Fr

=

[
S∗bi

F bi
+
S∗mp

Fmp
+

ρw−ρi
ρw

(dsem/dsfs)2+ (k− 1)(1− xi)

(1+ dsem
dsfs

)(k− 1)(1− xi)

S∗em

F bi

]
1Fr

≈
0.5%

Wm−2×month
1Fr , (33a)

1S∗H ≡
∑
i

∂S∗i

∂H

∂H

∂Fr
1Fr

=−

(
S∗bi+ S

∗
mp+ S

∗

bot+ 2S∗em

) 1
H

∂H

∂Fr
1Fr

≈
1.9%

W/m2×month
1Fr , (33b)

1S∗ ≡1S∗F +1S
∗

H ≈
2.4%

Wm−2×month
1Fr . (33c)

The numbers in Eq. (33) were obtained using the default val-
ues of the parameters, and ∂H

∂Fr
=−0.05 m3 W−1 roughly es-

timated using the Eisenman and Wettlaufer (2008) model.
This means that after a month’s growth global warming
would increase mean pond coverage by roughly 1.2 % per
1 W m−2 of warming. Nearly half of this increase in the mean
pond coverage comes from an increase in the strength of en-
hanced melting due to ice thinning. Simulating a 30-day melt
numerically using our model predicts an increase in mean
pond coverage with forcing at a rate of 1.5 % per 1 W m−2

of warming for small forcing (1Fr ≈ 0), which confirms the
approximate validity of our linearization. For larger forcing,
the sensitivity of pond coverage to forcing increases because
the ice thins. Our linearized estimate, Eq. (33), also gives the
dependence of the sensitivity on physical parameters. In a
likely scenario where the forcing is around 10 W m−2, our es-
timate predicts that after a month mean pond coverage would
increase by around 15 %, which corresponds to around 12 cm
of ice thinning solely due to the pond feedback. Ice thinning
after a month directly due to forcing would be only around
9 cm, meaning that the pond feedback must be taken into ac-
count to understand ice thinning under global warming. In-
creased forcing could also lead to changes in initial pond cov-
erage, changes in ice roughness, or changes in 1s or k. We
ignored these feedbacks, as we have no way of reliably esti-
mating ∂p

∂Fr
for these parameters.

6.3 Different growth modes yield different pond
evolution

Each of the four growth modes has different effects on the
pond coverage. We will now look in detail at each of the
growth modes, their effect on the pond evolution, and their
scaling with physical parameters. Figure 8 shows the de-
pendence of growth rate on pond fraction and solutions to
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Figure 8. (a) Dependence of growth rate on pond coverage for different modes of pond growth. The y axis shows the growth rate, dx
dt , for

each of the growth modes calculated using the default parameters and xi = 0. Pond growth rate for bare ice melting (blue line) first increases
up to a certain pond coverage and then decreases. Ponded ice melting (green line) increases with pond coverage from dx

dt = 0 at x = 0 to very
high values at high pond coverage. The ice bottom melting rate (red line) gradually increases with pond coverage. The vertical enhanced
melting rate (cyan line) decreases with pond coverage. The black line represents a realistic combination of the four growth modes and shows
that pond growth is dominated by enhanced melting early in the season and by freeboard sinking late in the season. The dashed magenta line
represents lateral melting estimated using parameters described in Sect. 7.1. (b) Solutions to Eq. (26) when only one of the growth modes is
active. The x axis shows the normalized time, where 0 corresponds to the beginning of the melt and 1 to entire floe being flooded.

Eq. (26) when only one of the strengths is nonzero, assum-
ing a first-year ice topography. Figure 9 shows the evolution
of pond coverage distribution when only one of the strengths
is nonzero.

All modes of growth depend in the same way on the bulk
ice density, ρb. Each of the strengths is inversely proportional
to ρb, meaning that ponds grow faster on ice with a lower
bulk density. The effect is, however, modest: within a reason-
able range of 916 kg m−3> ρb > 750 kg m−3, pond growth
rate can vary by at most 20 %.

We will first discuss freeboard sinking. Common to all
modes of freeboard sinking is the dependence on ice thick-
ness. Each freeboard sinking growth mode is inversely pro-
portional to the ice thickness, S∗fs ∝

1
H

, meaning that, all else
equal, ponds grow proportionally slower on thicker ice.

Although ice roughness may have a different effect on
each of the individual modes of freeboard sinking, for sim-
plicity we will assume that they are all affected by rough-
ness in the same way, as parameterized in Eq. (29). In that
case, each of these strengths is roughly proportional to the
square of the nondimensional ice roughness, S∗fs ∝ σ̂

2, mean-
ing that pond growth due to freeboard sinking is suppressed
on smooth ice.

We will now focus on individual components of freeboard
sinking. The parameter S∗bi controls pond growth by free-
board sinking due to melting bare ice. On first-year ice, ow-
ing to the shape of the hypsographic curve, the pond growth
rate by bare ice melting increases up to a certain pond cov-

erage and decreases afterwards (Fig. 8, blue line). S∗bi is pro-
portional to the flux F bi and depends on the initial pond cov-
erage as S∗bi ∝ (1− xi)

2. The quadratic dependence on ini-
tial bare ice fraction means that ponds on floes with less
initial pond coverage grow faster. It also means that floes
that start off less ponded can at some point become more
ponded than floes that start off more heavily ponded. We
can see this in Fig. 9a, where the pond coverage distribu-
tion narrows up to a certain point, after which it starts to
widen again because floes with lower xi overtake the floes
with higher xi . Using the default values of physical parame-
ters of F bi = 85 W m−2, H = 1.5 m, xi = 0.2, and σ̂ = 0.55,
we get S∗bi ≈ 0.13 month−1.

The parameter S∗mp controls pond growth by freeboard
sinking due to melting ponded ice. The pond growth rate
increases with pond fraction from 0 at x = 0 to very high
values at high pond coverage and can be the dominant mode
of pond growth if the pond coverage is high enough (Fig. 8,
green line). For this reason, giving a representative number
to pond growth rate, such as Smp, is only meaningful if the
melt season is short enough such that pond coverage during
that period does not change substantially. The dependence
on initial pond coverage is S∗mp ∝ xi(1− xi). For this reason
the pond coverage distribution widens over time when S∗mp

is dominant (Fig. 9b). Using Fmp = 171 W m−2 and other
parameters the same as above, we get S∗mp ≈ 0.07 month−1.
Although in this case, melting ponded ice affects pond evo-
lution less than bare ice melting, it can become stronger if
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Figure 9. In this figure we have evolved an ensemble of 105 floes
with varying initial pond coverage according to Eq. (26) when only
one of the growth modes is active. Red curves represent the ini-
tial pond fraction distribution, blue curves represent the pond frac-
tion distribution after a time, t , while the green curves represent
the pond fraction distribution after 2t . A time used in panel (a) is
t = 1

2
1−xi
Sbi

, in panel (b) it is t = 1
6

1−xi
Smp

, and in panels (c) through (f)

it is t = 1
4

1−xi
S

, where xi is the mean pond fraction of the initial
distribution and S is an appropriate strength. We show how differ-
ent growth modes have different effects on the pond fraction distri-
bution. (a) Bare ice melting first narrows the distribution and then
widens it. (b) Ponded ice melting widens the distribution. (c) Bot-
tom ice melting narrows the distribution, while the mean of the dis-
tribution increases at an increasing rate. (d) Enhanced melting nar-
rows the distribution, while the mean of the distribution increases
at a decreasing rate. (e) Using realistic parameters, the pond distri-
bution slowly narrows and accelerates. (f) Due to lateral melting,
pond coverage distribution does not change width, and the growth
is linear.

the pond coverage is higher. For example, S∗mp and S∗bi are
roughly the same at x = 0.35, while at x = 0.5 S∗mp is roughly
twice as large as S∗bi.

The parameter S∗bot controls pond growth by freeboard
sinking due to melting of the ice bottom. The pond growth
rate due to bottom melting increases with increasing melt
pond fraction, although more gradually than in the ponded
ice melting case (Fig. 8, red line). Since the growth rate is
proportional to the bare ice fraction, S∗bot ∝ (1−xi), the pond
coverage distribution gets concentrated over time (Fig. 9c).
Using F bot = 20 W m−2 and other parameters the same as
above, we get S∗bot ≈ 0.04 month−1. The contribution from
ice bottom melting becomes larger than the contribution from
bare ice melting only at high x.

Now, we will turn to enhanced melting. The parameter S∗em
controls pond growth by enhanced melting and is the least
constrained in our model due to the many poorly constrained

physical processes that potentially contribute to it. Here we
will only consider enhanced melting due to height-dependent
processes (Eq. 24) and leave lateral melting for the discus-
sion (Sect. 7.1).

Because the growth rate by enhanced melting is inversely
proportional to the hypsographic curve, pond growth by en-
hanced melting is very fast at the beginning of the melt
and decelerates afterwards (Fig. 8, cyan line). The enhanced
melting strength is inversely proportional to the square of
the ice thickness, S∗em ∝

1
H 2 , meaning that it is significantly

more sensitive to variations in thickness than freeboard sink-
ing. However, it is significantly less sensitive to variations
in ice roughness (Eq. 29). Even on perfectly smooth ice,
σ̂ = 0, ponds will grow due to enhanced melting. In that case,
however, lateral melt, rather than height-dependent enhanced
melting, may dominate.

The strength of enhanced melting is proportional to the
height below which enhanced melting is operational, S∗em ∝

1s. If we take ice wetting as a physical example, this means
that enhanced melting is sensitive to microphysical processes
that determine how high above sea level the ice will be wet.
The dependence on the parameter k depends on its mag-
nitude. It appears in S∗em in the term k−1

dsem/dsfs+1 . The term
dsem/dsfs is proportional to k− 1. Therefore, if dsem/dsfs�
1, enhanced melting is proportional to k− 1. However, if
dsem/dsfs� 1, enhanced melting becomes independent of k.
Using default parameters, we find this transition happens at
around k ≈ 1.2. In the example of ice wetting, this means
that enhanced melting is sensitive to albedo variations near
sea level when ice near sea level has a similar albedo to the
rest of the floe. However, if the albedo near sea level is sig-
nificantly lower than the average, pond growth is insensitive
to variations in properties of ice near sea level.

Enhanced melting is proportional to the cube of the bare
ice fraction, S∗em ∝ (1−xi)

3, making it very sensitive to vari-
ations in initial pond coverage. For this reason, the pond cov-
erage distribution gets quickly concentrated (Fig. 9d), and it
is possible for initially less ponded floes to overtake initially
more ponded floes. If we assume ice wetting is the only phys-
ical process responsible for enhanced melting, we can place a
rough estimate on S∗sm. Taking k = 1.7,1s = 0.06 m, and t =
30 days, we get for default parameters S∗em ≈ 0.31 month−1.
This suggests that the contribution to mean pond coverage
from enhanced melting is slightly larger than the contribu-
tion from freeboard sinking after 30 days of melt.

The black line in Fig. 8 shows the total pond evolution us-
ing the default physical parameters. The pond growth rate
when both freeboard sinking and enhanced melting occur
is not simply a sum of the growth rates of the four modes
since the equations for freeboard sinking and enhanced melt-
ing are solved separate of each other. Therefore, the depen-
dence of growth rate on pond coverage (Fig. 8a, black line)
was obtained by finding the derivative of the pond evolution
curve. The pond growth rate first decreases with pond frac-
tion, indicating that enhanced melting dominates early in the
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Figure 10. The red curve is the results of Skyllingstad et al. (2009).
The black curve is the solution to Eq. (34) with F lat =KlatFmp.
The pond albedo and the shortwave, longwave, sensible, and latent
heat fluxes used to find Fmp are the same as used in Skyllingstad et
al. (2009) and Klat = 1.5. A nearly perfect agreement between the
two curves suggests that a single nondimensional constant, Klat, is
enough to describe pond growth by lateral melting, and the compli-
cated physics of lateral melting are important only in determining
the value of Klat.

season and then increases, indicating that freeboard sinking
dominates later in the season. The pond coverage distribu-
tion using realistic parameters narrows with time (Fig. 9e).
Since each growth mode affects the pond coverage distribu-
tion in a distinct way, fitting both the evolution of the mean
and the standard deviation of the pond coverage distribu-
tion in observational data could add constraints on the rel-
evant strengths. Using the above values of strengths, we find
that after a month of growth bare ice melting contributes to
roughly 25 % of mean pond coverage, ponded ice melting
contributes to around 13 %, ice bottom melting contributes
to around 7 %, and enhanced melting contributes to roughly
55 %.

7 Discussion

7.1 Lateral melting of pond walls by pond water

In our model, we focused on vertical changes in topography,
and neglected pond growth by lateral melting of pond side-
walls by pond water. We will now briefly discuss this possi-
bility.

This type of melt was the main focus of Skyllingstad et
al. (2009), who carefully calculated the lateral melt rates of
pond sidewalls by pond water. The red line in Fig. 10 shows
their results. The rate of change of pond fraction due to a

lateral melt flux F lat is

dxlat

dt
=
P

A

F lat

lρb
, (34)

where P is the total perimeter of the ponds and A is the area
of the floe. If F lat is constant and the dependence of P on
pond fraction is weak, pond growth is linear, which explains
the roughly linear pond coverage evolution in Skyllingstad et
al. (2009). In Fig. 10, black line, we solve Eq. (34) assuming
a lateral melt flux proportional to the ponded ice melting flux,
F lat =KlatFmp, where Klat is a constant. We use the same
energy fluxes used by Skyllingstad et al. (2009) and esti-
mate P

A
≈ 0.1 m−1 from the aerial photographs taken during

SHEBA. A nearly perfect match is obtained with Klat = 1.5.
Therefore, a single constant that relates the rate of melt of
ponded ice to the rate of melt of pond walls, Klat, is enough
to capture the effects of lateral melting on pond growth. This
suggests that the complicated physics of lateral melting can,
to a large extent, be ignored. More work would, however, be
needed to determine to what degree Klat varies under differ-
ent circumstances.

If we ignore the topographic variation above sea level,
pond growth due to enhanced melting also becomes linear
(Eq. 20). Therefore, lateral melting can approximately be
considered a contribution to enhanced melting, Sem, although
it scales differently with physical parameters than the height-
dependent enhanced melting (Eq. 24). It is important to note
that in this model lateral melt does not depend on ice thick-
ness, H , or on initial pond coverage, xi , although, in reality,
it may depend on these to some degree. For this reason, the
pond coverage distribution width does not change in time,
while the mean increases linearly (Fig. 9f).

It is not simple to understand the contribution of lateral
melting to pond growth when both lateral and vertical melt-
ing occur simultaneously. Each point along the pond bound-
ary can expand either by lateral melting or by vertical melt-
ing, but not by both. This is because when a point along the
pond boundary melts laterally, it creates a completely verti-
cal slope at that point. Therefore a small vertical shift will
not grow the ponds, and a large vertical shift will outgrow
the lateral expansion. Therefore, if pond growth due to verti-
cal melting is strong, the contribution from lateral melting
will be small. This is consistent with observations of Po-
lashenski et al. (2012) and Landy et al. (2014), who found
that on first-year ice the contribution from lateral melting is
small. However, steep topography on level multiyear ice in-
hibits pond expansion through vertical motion and could lead
to lateral melting being the dominant mode of growth. This
is consistent with our findings of a large contribution from
enhanced melting to pond growth on multiyear ice during
SHEBA (Fig. 5).
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7.2 Effects of density variations and internal melt

So far, we have assumed that all the melt occurs on either
the top or the bottom surface of the ice. However, some of
the melt can happen internally, in the bulk of the ice. Inter-
nal melt occurs when trapped brine pockets with high salt
content expand and dilute in order to reach a thermodynamic
equilibrium with the surrounding ice. This phenomenon has
been reported to occur both above and below sea level. Inter-
nal melt leads to a reduction in bulk ice density, ρb, which in
turn affects pond evolution. Accounting for internal melt cor-
rectly can be quite challenging as it requires detailed knowl-
edge of the vertical structure of internal melt and bulk den-
sity. Nevertheless, we find that although the effects of inter-
nal melt and density variation may be significant when con-
sidered individually, if considered together they are likely
small.

If internal melt is uniform throughout the vertical ice
column, the only effect is a gradual reduction in ρb over
the course of the melt season, slightly increasing the pond
growth rate. If, however, internal melt has a vertical struc-
ture, it will create a vertically nonuniform bulk ice density
which can have more complicated effects on pond evolution.
Variations in bulk density and internal melt affect pond evo-
lution in the following ways: (1) mass transported across sea
level due to rigid body movement depends on the bulk den-
sity at sea level; (2) the volume of ice removed by local melt
depends on the bulk ice density at the surface; (3) freeboard
height depends on average bulk densities above and below
sea level; and (4) internal melt induces rigid body motion
by melting mass above and below sea level, without chang-
ing the ice surface. We outline the procedure to include these
effects in the pond evolution model in Appendix D. The re-
sulting equation for pond coverage evolution has the same
form as Eq. (26), with only the strengths modified. Here,
we only qualitatively discuss our findings. Pond evolution is
most sensitive to the following:

1. The difference between the internal melt rate above and
below sea level, easl−ebsl, creating a rigid body motion.
Here, easl/bsl is the energy density used for internal melt-
ing, averaged over all ice above or below sea level. More
internal melt above (below) the sea level will create an
upward (downward) rigid body motion of the floe, slow-
ing down (speeding up) pond growth.

2. The difference between the bulk ice density at the sur-
face and the bulk ice density at sea level, ρb(h)−ρb(0),
changing the ratio of topographic change due to lo-
cal melt to rigid body motion. Using default parame-
ters, rigid body motion is upwards, slowing down pond
growth. Therefore, a lower (higher) bulk ice density at
the surface relative to sea level increases (decreases) the
rate of local melt relative to rigid body motion, speeding
up (slowing down) pond growth.

If considered as independent processes, vertical variations
in bulk ice density and internal melt can significantly al-
ter the rate of pond growth. For example, assuming ρb(0)=
850 kg m−3, ρb(h)= 750 kg m−3, and no internal melt leads
to a roughly 60 % increase in the pond growth rate. However,
these processes depend on each other and have the opposite
effects on pond evolution. For example, a high rate of inter-
nal melt above sea level, slowing down pond growth, will
lower the bulk ice density above sea level, speeding up pond
growth.

Density and internal melt can be related via a differential
equation, ∂ρb(z)

∂t
=−

e(z)
l
−
∂ρb(z)
∂z

dsrigid body
dt , where z is a ver-

tical coordinate within the ice column. Assuming vertically
uniform rates of internal melt above and below sea level, an
approximate long-time solution to this equation yields a ver-
tically uniform bulk density below sea level, and a linearly
decreasing bulk density above sea level. This also defines a
long-time relationship between the vertical profiles of inter-
nal melt and bulk ice density, easl−ebsl =

l
h

dsrigid body
dt (ρb(0)−

ρb(h)). Using densities from the example in the paragraph
above, and the rate of internal melt obtained in this way, leads
to a roughly 10 % increase in pond growth rate, significantly
less than the 60 % we found when considering only the ef-
fects of vertical density structure.

A long-time effect of vertically nonuniform internal melt
and density is always a significant compensation between the
two, although there may be transient effects. For this reason,
we believe that including a vertical structure of density or
internal melt in the simple model of pond evolution model is
most likely unnecessary.

7.3 Under certain conditions, ponds can stop growing

Here, we will entertain the possibility of pond growth by ver-
tical motion of the topography stopping entirely for a period
of time. This is an example of a possible transient effect of
internal melting, which, although interesting, seems unlikely.

If there is enough mass removed above sea level to induce
an upward rigid body motion that is able to compensate for
the effects of local melting near the sea level, points near
the sea level would move upwards, ds

dt > 0, and pond growth
would stop. This could, for example, occur if there is strong
internal melting above sea level. After a time, however, high
internal melt above sea level would lower the bulk ice density
at the surface, thereby increasing the rate of local melt and
reinitializing pond growth.

We will use an equation for ds
dt that includes the effects of

vertically nonuniform internal melt and bulk ice density we
derive in Appendix D, Eq. (D2). Requiring that ds

dt (x) > 0 for
any x, we find the condition for pond growth stopping as

k <
ρb(h)

ρb(0)
ρi

ρw

(
1+

h

F bi

(
easl− ebsl

ρasl

ρbsl

))
−
ρw− ρi

ρw

F bot

F bi
, (35)

where ρasl/bsl is the average bulk density above and below
sea level. Using the values of internal melt and bulk densities
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from the previous chapter and taking ρasl
ρbsl
≈ 1, we find that in

order for ponds to stop growing, k has to be less than 0.85.
This is unlikely as ice near the sea level likely melts faster
than ice higher up. Nevertheless, if internal melt has not had
enough time to adjust densities above and below sea level,
it is possible that pond growth could be stopped for a time
by the action of internal melt above sea level. For example,
assuming the same internal melt as in the previous example
but a uniform bulk ice density (ρb(h)= ρb(0)), pond growth
would be stopped at k = 1. In this case it is likely that growth
by lateral melt would take over, as Eq. (35) ensures only that
pond growth by vertical motions is prevented.

8 Conclusions

We presented a simple analytical model for melt pond evo-
lution on permeable Arctic sea ice. The model is represented
by two ordinary differential equations in which the rate of
change of pond coverage depends on pond coverage. The
model is governed by four parameters, Sbi, Smp, Sbot, and
Sem, that control the rate of pond growth by bare ice melting,
ponded ice melting, ice bottom melting, and enhanced melt-
ing. Using this model we are able to reproduce observations
well.

Our main finding is that we can estimate the mean pond
coverage as a function of time without running the model by
using “effective strengths”: S∗bi, S

∗
mp, S∗bot, and S∗em. Here all

the physical parameters combine in a known way which per-
mits understanding of the behavior of pond coverage under
general conditions. The most important conclusions we draw
from analyzing the effective strengths are as follows:

1. Ponds grow slower on smoother ice, with freeboard
sinking roughly proportional to the square of the bare
ice roughness and enhanced melting increasing roughly
linearly with roughness.

2. Ponds respond to both freeboard sinking and enhanced
melting on first-year ice and almost entirely to enhanced
melting on multiyear ice.

3. The pond growth rate is more sensitive to changes in
bare sea ice albedo than changes in pond albedo unless
the ice is already mostly covered in ponds.

4. Under a global warming scenario, the pond feedback
could lead to ice thinning comparable to thinning due to
direct forcing.

5. The dependence of ice albedo on height above sea level
is likely a significant control on pond evolution.

6. The pond coverage distribution over an ensemble of
floes likely narrows over time.

7. Pond evolution is insensitive to small timescale varia-
tions in the forcing.

8. If freeboard sinking is suppressed by topography, lat-
eral melting likely plays an important role, making it a
significant factor on multiyear ice.

9. The complicated physics of lateral melting can be sum-
marized by a single nondimensional constant Klat that
relates the lateral melt flux to the flux used for melting
the pond bottom.

10. The vertical structure of density and internal melt can
likely be ignored.

As melt pond coverage is one of the key controls on sum-
mer Arctic sea ice albedo, some representation of it in GCMs
is necessary for predicting the future of sea ice and its im-
pact on global climate. With the exception of enhanced melt-
ing, our model depends only on parameters that are either
available in large-scale models or that can be reasonably es-
timated. Therefore, if stricter constraints can be placed on
the strength of enhanced melting, our model may present an
accurate and computationally low-cost representation of sea
level melt ponds that could be used in GCMs.

Code availability. Code to produce all of the figures in the paper
along with relevant data is available at http://hdl.handle.net/11417/
304, doi:10.6082/M1B27S7X.

Data availability. The data used are cited in the main text of the
paper. Also, relevant SHEBA data can be found at http://data.eol.
ucar.edu/codiac_data/sheba/data/perovich/ICEWEB/.
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Appendix A

A good fit to measured hypsographic curves is a tangent
function (Fig. 2):

s(xh)= a
[
tan
( π

2m
p1 ((xh− xi)−p2(1− xi))

)
+ tan

( π
2m
p1p2(1− xi)

)]
(A1a)

m≡max(p2(1− xi), (1− xi)−p2(1− xi)) . (A1b)

Although this function has a cumbersome form, the param-
eters involved have a clear interpretation. The requirement
that the initial pond fraction is at xh = xi is automatically
satisfied as this is a zero of the function Eq. (A1). The pa-
rameter a is determined by the requirement of hydrostatic
balance, < s(xh) >= h. Therefore, after specifying the ini-
tial pond fraction, xi , and the initial ice thickness H , the
only two unconstrained parameters are p1 and p2. Param-
eter 0< p1 < 1 determines the level of “variability” of the
curve: if p1 is close to 0, s(xh) is roughly linear, whereas
if p1 is close to 1, s(xh) is highly curved. Parameter p2 de-
termines the position of the inflection point of the tangent
function relative to xi . Therefore p2 < 0 means that the in-
flection point is to the left of xi , and s(xh) is fully convex.
For p2 > 1, the inflection point is to the right of xh = 1, and
s(xh) is fully concave. If 0< p2 < 1, s(xh) transitions from
concave to convex at xh = xi +p2(1− xi). We note that the
nondimensional bare ice roughness, σ̂ , for a hypsographic
curve defined in this way does not depend on ice thickness
or initial pond coverage, but only on parameters p1 and p2.
For the hypsographic curve measured by Landy et al. (2014)
for 25 June 2011, the values of the shape parameters are
p1 ≈ 0.8 and p2 ≈ 0.4, whereas for the hypsographic curve
measured during SHEBA (Fig. 2a, dashed line) the parame-
ters are p1 ≈ 0.9 and p2 ≈ 0.5.

Appendix B

In order to make a connection between a model where a con-
stant fraction of bare ice, δ, is affected by enhanced melting
and a model where ice below a fixed elevation, 1s, is af-
fected, we need to estimate how δ scales with 1s. It is im-
portant to make this connection since several physical mech-
anisms that significantly affect the melt rate depend on the
elevation of ice above sea level. To do this, we will use an
alternative model where we assume both freeboard sinking
and enhanced melting occur simultaneously, and enhanced
melting only affects ice below 1s (Fig. 3d). We define xs to
be the fraction of ice below1s, x to be the fraction of the ice
below sea level, and δ ≡ xs − x to be the difference between
the two. xs evolves only due to freeboard sinking, whereas x
evolves due to both freeboard sinking and enhanced melting.

The equations for the evolution of xs and x are

dxs
dt
=

dxh
ds

∣∣∣∣
xs

dsfs
dt

(B1a)

dx
dt
=

dx
ds

[
dsfs
dt
+

dsem

dt

]
. (B1b)

Here, dsfs
dt and dsem

dt are determined by Eq. (12). Since free-
board sinking does not change the shape of the topography
and xs evolves only due to freeboard sinking, dxh

ds |xs is sim-
ply the inverse slope of the original hypsographic curve eval-
uated at xs . In contrast, the hypsographic curve near sea level
is affected by enhanced melting and therefore changes shape
over time. For this reason, dx

ds , which relates the change in
pond fraction, dx, to the vertical change in the hypsographic
curve at sea level, ds, changes with time. Nevertheless, if
1s is small enough, we can approximate the hypsographic
curve between x and xs to be a straight line, meaning that
dx
ds ≈

xs−x
1s
=

δ
1s

. This approximation closes our alternative
model. This model provides a similar level of agreement with
the 1-D model as the 0-D model Eq. (26) but is more compli-
cated to analyze. For this reason, we focus on Eq. (26) to an-
alyze pond evolution and use Eq. (B1) only in what follows.
We note that if the hypsographic curve is convex, Eq. (B1)
agrees better with the 1-D model than Eq. (26). This config-
uration is, however, unrealistic.

Using dx
ds =

δ
1s

and subtracting dx
dt from dxs

dt in Eq. (B1),
we get an equation for evolution of δ:

dδ
dt
=

dxh
ds

∣∣∣∣
(x+δ)

dsfs
dt
−

δ

1s

[
dsfs
dt
+

dsem

dt

]
. (B2)

Since dsfs
dt +

dsem
dt is larger than dsfs

dt , δ decreases until it reaches
a constant value after some time. Therefore, a constant 1s
model and a constant δ model become equivalent after some
time. Therefore, finding the value of δ for which dδ

dt = 0 rep-
resents a natural way to relate the two models.

The values of dsfs
dt , dsem

dt , and dxh
ds |(x+δ) themselves depend

on pond fraction, x (Eq. 12). Furthermore, dsfs
dt and dsem

dt de-
pend on the energy fluxes used for melting the ice, which
may fluctuate in time. For these reasons, δ is never fully
constant. To deal with this, we estimate the magnitudes of
dsfs
dt , dsem

dt , and dxh
ds |(x+δ) by substituting x→ xi , dxh

ds |(x+δ)→
1−xi
h

, and energy fluxes, F , with their representative values,
|F |, e.g., their time averages. We then find the magnitude of
δ as

δ = C
ρw

ρw− ρi

1s(1− xi)2

H

1
dsem
dsfs
+ 1

, (B3)

where C is a nondimensional number that does not depend
on physical parameters, there to compensate for the crude ap-
proximations of using only the initial pond fraction and the
average slope of the hypsographic curve. Comparing to 1-D

www.the-cryosphere.net/11/1149/2017/ The Cryosphere, 11, 1149–1172, 2017
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model, we find C ≈ 2
3 . The term dsem

dsfs
is the ratio of magni-

tudes of dsem
dt and dsfs

dt and is given by

dsem

dsfs
=

ρw

ρw− ρi

|F bi|(k− 1)

|F bi| +
xi

1−xi
|Fmp| +

1
1−xi
|F bot|

. (B4)

Using δ defined in this way in the 0-D model, Eq. (26), pro-
vides excellent agreement with Eq. (B1) and the 1-D model
run with constant1s. We note that this agreement is reached
in the long-time limit, and for times shorter than roughly

1s
(dsem/dt+dsfs/dt)

some disagreement can persist. Although the
magnitude of the disagreement depends on the shape of the
hypsographic curve, it is typically not very large, and the 0-D
model provides a reasonable estimate of pond evolution even
for short times.

Appendix C

Here we describe the procedure we used to estimate the ef-
fective strengths of Eq. (29). We write the effective strengths
as

S∗ = f (σ̂, t̂)S, (C1)

where f (σ̂, t̂) is a nondimensional function of nondimen-
sional roughness σ̂ and nondimensional time t̂ ≡ St

1−xi
, and

S is either Sfs ≡ (Sbi+ Smp+ Sbot) in the case of freeboard
sinking or Sem in the case of enhanced melting. The nondi-
mensional time, t̂ , defined in the above way measures how
far the melt season has progressed, with t̂ = 0 corresponding
to the beginning of pond growth and t̂ = 1 roughly corre-
sponding to the end of pond growth with entire floe flooded.
The function f (σ̂, t̂) measures how much the mean pond
coverage deviates from a mean coverage of linearly evolv-
ing ponds. For a linear pond evolution, x(t)= St + xi , the
function f (σ̂, t̂)= 1.

We separately consider freeboard sinking and enhanced
melting. For all the curves in Fig. 7a and b, we find f (σ̂, t̂) at
several different times t̂ as f (σ̂, t̂)= 2<x(t)>−xi

St
. We show

the results in Fig. C1a and b, where f are plotted as func-
tions of roughness and different colors correspond to differ-
ent times t̂ . For any given time, the scatter comes from the
fact that the hypsographic curve is not fully determined by
roughness.

In the case of freeboard sinking, ffs does not depend much
on t̂ . A quadratic ffs(σ̂, t̂)= cσ̂

2 fits the scatter data well.
Based on best fit estimates, we find c ≈ 1.3 (Fig. C1a, red
dashed line).

In the case of enhanced melting, fem depends strongly on
time t̂ . We choose to parameterize fem with a linear func-
tion of the form fem(σ̂, t̂)= 1+ c(t̂)σ̂ . We can approximate
c(t̂) by exactly solving the equation for enhanced melting,
Eq. (20), for a linear hypsographic curve, s(xh)∝ (xh− xi).
Finding the roughness and < x(t) > in this case, we find

c(t̂)≈
(

2
√

t̂
−

3
2

)
. Red dashed lines in Fig. C1b show fem pa-

rameterized in this way.

Appendix D

Here, we outline the procedure to include the effects of ver-
tically nonuniform internal melt and bulk ice density. We as-
sume that the bulk ice density, ρb, and the energy density
used for melting the ice internally, e, have a vertical struc-
ture, ρb(z) and e(z), where z is positive upwards, z= 0 cor-
responds to sea level, and z= h corresponds to ice surface.

Mass transported across sea level depends on the bulk den-
sity at the sea level, the rate of local melting depends on the
bulk ice density at the surface, and the freeboard height de-
pends on the average densities above and below sea level,
ρasl/bsl. Internal melt above and below sea level creates a rigid
body motion. This is summarized as

dmrigid body
= ρb(0)Abidsrigid body, (D1a)

dmmelt
asl =−Abi

F bi

l
dt −Abih

easl

l
dt, (D1b)

dmmelt
bsl =−Amp

Fmp

l
dt −A

F bot

l
dt −AHd

ebsl

l
dt, (D1c)

h=
ρw− ρi

ρw

H

1− x
1

1−1ρb
ρi
ρw

, (D1d)

dsloc

dt
(r)=−k(r)

F bi

lρb(h)
, (D1e)

where Hd is the ice draft depth defined as the volume of ice
below sea level divided by the area of the ice floe, easl/bsl is
the energy density used for internal melting averaged over
all ice above or below sea level, and 1ρb ≡

ρbsl−ρasl
ρbsl

is the
relative difference in mean bulk density above and below sea
level.

With these changes, we can find the equation for pond cov-
erage evolution straightforwardly by repeating all of the steps
from Sect. 2. We first derive the equation for the vertical mo-
tion of points near the sea level

ds
dt
=−

[
(k− 1)

F bi

lρb(h)

]

−

[
1

lρb(0)

(
F bi

(
ρb(0)
ρb(h)

−
ρi

ρw

)
+
(ρw− ρi)x

ρw(1− x)
Fmp

+
ρw− ρi

ρw(1− x)
F bot+

ρi

ρw
hebsl(1e−1ρb)

)]
, (D2)

where 1e ≡ ebsl−easl
ebsl

is the relative difference in average en-
ergy density used for internal melting below and above sea
level. The two terms in square brackets correspond to en-
hanced melting and freeboard sinking. Then we repeat the
procedure to relate Eq. (D2) to the change in pond coverage.
The resulting equation has the same form as Eq. (26), with
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Figure C1. Determining the effective strengths, S∗ ≡ f (σ̂, t̂)S. Points represent estimates of the correction f (σ̂, t̂) for each of the curves in
Fig. 7 evaluated at different times t̂ ≡ St

1−xi
. The function f (σ̂, t̂) is evaluated as f (σ̂, t̂)≡ 2(< x(t) >−xi)/(St). Different colors correspond

to different times with black corresponding to early in the season and magenta to late in the season. Nondimensional roughness, σ̂ , is
shown on the x axis. (a) ffs(σ̂, t̂) evaluated for the freeboard sinking curves in Fig. 7a. There is no obvious dependence on t̂ . Freeboard
sinking becomes completely suppressed as roughness tends to zero. The dashed red line represents the fit to these estimates of the form
ffs(σ̂, t̂)= aσ̂

2. (b) fem(σ̂, t̂) evaluated for the enhanced melting curves in Fig. 7b. There is a clear dependence on t̂ . Enhanced melting
proceeds even as roughness tends to zero. Red dashed lines are fits to these data of the form fem(σ̂, t̂)= 1+ c(t̂)σ̂ , where c(t̂)≡ 2√

t̂
−

3
2 .

only the strengths modified:

Sint =
(1− xi)

ρi
ρw
ebsl (1e−1ρb)

lρb(0)
, (D3a)

Sbi =
(1− xi)2

(
1−1ρb

ρi
ρw

)(
1+ ρw(ρb(0)−ρb(h))

ρb(h)(ρw−ρi)

)
Hlρb(0)

F bi,

(D3b)

Smp =
(1− xi)xi

(
1−1ρb

ρi
ρw

)
Hlρb(0)

Fmp, (D3c)

Sbot =
(1− xi)

(
1−1ρb

ρi
ρw

)
Hlρb(0)

F bot, (D3d)

Sem =

(
ρw

ρw− ρi

)2 21s(1− xi)3(k− 1)
(

1−1ρb
ρi
ρw

)2

3H 2lρb(0)
(

1+ dsem
dsfs

) F bi.

(D3e)

Here, the strength of internal melting, Sint, should be in-
cluded in the equation for freeboard sinking. The term dsem

dsfs
is given by the ratio of the two terms in square brackets in
Eq. (D2). The equation for pond growth, Eq. (26), using the
above strengths, Eq. (D3), should also be supplemented with
an equation for evolution of bulk density:

∂ρb(z)

∂t
=−

e(z)

l
−
∂ρb(z)

∂z

dsrigid body

dt
. (D4)
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Appendix E: Nomenclature

Parameter Meaning

t , t̂ Time and nondimensional time, t̂ = St
1−xi

s(r) Surface elevation above sea level at point r

s(xh), ŝ(xh), d̂s
dx̂h

Hypsographic curve, nondimensional hypsographic curve, ŝ(xh)= s(xh)
h

, and its nondimen-
sional derivative, d̂s

dx̂h
=

1−xi
h

ds
dxh

dsrigid body, dsloc(r) Change in surface elevation due to rigid body motion and due to local melting at point r

dsfs, dsem, dsem/dsfs Change in surface elevation due to freeboard sinking, enhanced melting, and the magnitude
of their ratio

dmmelt/rigid body
asl/bsl Change in mass above and below sea level due to ice melting or rigid body motion

x, x̂, 1̂− x Pond fraction, normalized pond fraction x̂ = x
xi

, and normalized bare ice fraction, 1̂− x =
1−x
1−xi

xi Initial pond fraction
xh Fraction of ice below an elevation given by the hypsographic curve
xs Fraction of ice below 1s

xfs(t), xem(t), xlat(t) Pond coverage evolution due to freeboard sinking, enhanced melting, and lateral melting
A, Abi, Amp Areas of the floe, bare ice, and melt ponds
P Total perimeter of the ponds
ρw, ρi, ρb Densities of salt water, pure ice, and bulk ice once all the brine has drained
l Latent heat of melting
H , h Initial thickness of the ice and average initial freeboard height
σ , σ̂ Bare ice roughness and nondimensional bare ice roughness, σ̂ = σ

h

p1, p2 Shape parameters of the hypsographic curve that control the “amount of variability” of the
curve and the location of the inflection point

k(r) Ratio of the melt rate at point r to the average rate of bare ice melting
1s Height above sea level below which there is enhanced melting
δ Fraction of the ice affected by enhanced melting
αbi, αmp Albedos of bare ice and melt ponds
Fsol, Fr Solar energy flux and the sum of longwave, latent, and sensible heat fluxes
F bi, Fmp, F bot, F lat Fluxes of energy used for melting bare ice, ponded ice, ice bottom, and lateral melting aver-

aged over bare ice, ponded ice, ice bottom, and the pond perimeter
|F | Representative values of fluxes, e.g., their time averages
Klat Constant relating the flux of energy used for melting ponded ice to the flux of energy used

for lateral melting
Sbi, Smp, Sbot, Sem Strengths of bare ice melting, ponded ice melting, ice bottom melting, and enhanced melting
S∗bi, S

∗
mp, S∗bot, S

∗
em Effective strengths of bare ice melting, ponded ice melting, ice bottom melting, and enhanced

melting, that take into account the effects of bare ice roughness
S∗fs Effective strength of freeboard sinking, S∗fs = S

∗

bi+ S
∗
mp+ S

∗

bot
S∗ Total effective strength, S∗ = S∗bi+ S

∗
mp+ S

∗

bot+ S
∗
em
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