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Abstract. The effects of soil property uncertainties on per-

mafrost thaw projections are studied using a three-phase sub-

surface thermal hydrology model and calibration-constrained

uncertainty analysis. The null-space Monte Carlo method

is used to identify soil hydrothermal parameter combina-

tions that are consistent with borehole temperature measure-

ments at the study site, the Barrow Environmental Obser-

vatory. Each parameter combination is then used in a for-

ward projection of permafrost conditions for the 21st century

(from calendar year 2006 to 2100) using atmospheric forc-

ings from the Community Earth System Model (CESM) in

the Representative Concentration Pathway (RCP) 8.5 green-

house gas concentration trajectory. A 100-year projection al-

lows for the evaluation of predictive uncertainty (due to soil

property (parametric) uncertainty) and the inter-annual cli-

mate variability due to year to year differences in CESM cli-

mate forcings. After calibrating to measured borehole tem-

perature data at this well-characterized site, soil property un-

certainties are still significant and result in significant pre-

dictive uncertainties in projected active layer thickness and

annual thaw depth-duration even with a specified future cli-

mate. Inter-annual climate variability in projected soil mois-

ture content and Stefan number are small. A volume- and

time-integrated Stefan number decreases significantly, indi-

cating a shift in subsurface energy utilization in the future

climate (latent heat of phase change becomes more impor-

tant than heat conduction). Out of 10 soil parameters, ALT,

annual thaw depth-duration, and Stefan number are highly

dependent on mineral soil porosity, while annual mean liq-

uid saturation of the active layer is highly dependent on the

mineral soil residual saturation and moderately dependent on

peat residual saturation. By comparing the ensemble statis-

tics to the spread of projected permafrost metrics using dif-

ferent climate models, we quantify the relative magnitude

of soil property uncertainty to another source of permafrost

uncertainty, structural climate model uncertainty. We show

that the effect of calibration-constrained uncertainty in soil

properties, although significant, is less than that produced by

structural climate model uncertainty for this location.

1 Introduction

Increasing Arctic air and permafrost temperatures (Serreze

et al., 2000; Jones and Moberg, 2003; Hinzman et al., 2002;

Romanovsky et al., 2007), the resulting increase in the thick-

ness of soil that thaws on an annual basis (Romanovsky and

Osterkamp, 1995), and the potential for greenhouse gas re-

lease due to the ensuing decomposition of previously frozen

organic carbon (Koven et al., 2011; Schaefer et al., 2011)

provide motivation for developing robust numerical projec-

tions of the thermal hydrological trajectory of Arctic tundra

in a warming climate. Projections of permafrost thaw and the

associated potential for greenhouse gas release from the ac-

celerated decomposition of previously frozen carbon are sub-

ject to several sources of uncertainty, including (but not lim-

ited to) structural uncertainties in the climate models; uncer-

tainty about the model forcings/inputs in the future (scenario

uncertainty in the typology of Walker et al., 2003); paramet-

ric uncertainties in soil and surface properties that control the

downward propagation of thaw fronts; and structural uncer-
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tainties in the surface and subsurface thermal hydrological

models.

Previous efforts to characterize uncertainty in permafrost

thaw projections have mostly focused on climate model

structural uncertainties and climate model uncertainties, pre-

sumably because of an implicit assumption that those two

sources of uncertainty overwhelm the other sources. How-

ever, recent large-scale model comparisons suggest that

a substantial portion of projected permafrost uncertainties

is a result of structural model differences in land sur-

face/subsurface schemes (Slater and Lawrence, 2013; Koven

et al., 2013), particularly how subsurface thermal hydrologic

processes are represented (Koven et al., 2013) rather than

simply climate variation. Although those studies focused on

structural uncertainty in surface and subsurface models and

not on soil property uncertainty, the reported sensitivity to

the subsurface model suggests that uncertainty in soil prop-

erties may also contribute significantly to overall uncertainty

in thaw projections.

The bulk hydrothermal properties of soil that control the

active layer thickness (ALT, i.e., the depth of soil that thaws

on an annual basis) (Neumann, 1860; Stefan, 1891; Ro-

manovsky and Osterkamp, 1997; Peters-Lidard et al., 1998;

Kurylyk et al., 2014) vary among sites and locally within a

single site, in particular being sensitive to the local organic

matter content and bulk porosity (Letts et al., 2000; Price

et al., 2008; O’Donnell et al., 2009; Hinzman et al., 1991;

Chadburn et al., 2015a). Langer et al. (2013) identify the

soil composition uncertainties, particularly the soil ice/water

content, to have the largest effect on ALT. Intermediate to

large-scale thermal simulations of ALT are known to be sen-

sitive to soil properties (Hinzman et al., 1998; Rawlins et al.,

2013). Because of this sensitivity, large-scale Earth system

models (ESMs) were recently updated to include layers of

moss and peat in order to better represent subsurface ther-

mal conditions (Beringer et al., 2001; Lawrence and Slater,

2008; Wania et al., 2009; Subin et al., 2012; Ekici et al.,

2014; Chadburn et al., 2015b). Despite the recognition of

soil property uncertainty and heterogeneity as important con-

tributors to uncertainties in permafrost conditions and extent,

global and regional studies that address permafrost future

conditions and extent typically apply broad soil texture clas-

sifications, such as those defined by Clapp and Hornberger

(1978) and Cosby et al. (1984), to parameterize soil proper-

ties (Lawrence and Slater, 2008), usually without considera-

tion of soil property uncertainty (Lawrence and Slater, 2005;

Hinzman et al., 1998; Shiklomanov et al., 2007; Koven et al.,

2013; Rinke et al., 2008).

Soil property uncertainty is different from many other

sources of projection uncertainty (e.g., climate model uncer-

tainty) in that uncertainties in soil properties may be reduced

by a combination of site characterization (Hinzman et al.,

1998) and model calibration (Romanovsky and Osterkamp,

1997; Nicolsky et al., 2009; Jiang et al., 2012; Atchley et al.,

2015). Initial steps in that direction have been taken. For ex-

ample, Romanovsky and Osterkamp (1997) calibrate thermal

soil properties using a purely conductive thermal model us-

ing measured temperatures at several sites and Nicolsky et al.

(2009) perform a sensitivity analysis of a calibration (data

assimilation) approach to identify its ability to recover ther-

mal soil properties using a 1-D thermal model and apply the

calibration approach to several sites. Atchley et al. (2015) re-

cently demonstrated an iterative approach for using site char-

acterization data to simultaneously refine thermal hydrology

model structure and estimate model parameters. Their ap-

proach was applied to the Barrow Environmental Observa-

tory, but could be used at other sites to improve model struc-

ture and parameter assignments in the regional or global con-

text.

Recognizing that permafrost projections are sensitive to

subsurface model representations and that soil property un-

certainties may be reduced through characterization and pa-

rameter estimation, a natural next step is to quantify how

such activities will impact overall uncertainties in permafrost

thaw projections in comparison to other sources of uncer-

tainty. Here we address that question. Specifically, we con-

sider how uncertainties in soil hydrothermal properties prop-

agate to uncertainties in numerical projections of permafrost

thaw at a well-characterized site. We go beyond a tradi-

tional unconstrained uncertainty quantification and focus on

the residual uncertainties that remain after soil parameters

have been carefully calibrated to borehole temperature data.

The intent of the current work is to develop initial insights

into how effective site characterization activities might be at

reducing uncertainties associated with soil parameters. We

show that with the future climate specified and with the ad-

vantage of calibration targets from a well-characterized site,

significant uncertainties remain in projected ALT and other

metrics important for carbon decomposition in the future

climate. We evaluate both predictive uncertainty and inter-

annual climate variability. We show that this residual uncer-

tainty is significant, albeit less than that associated with un-

certainties in the future climate.

We focus on temperature data as they are one of the eas-

iest and most common types of soil data to collect at field

sites and are often used for early site characterization. While

many sites may have other types of measurements available,

such as water and ice content measurements, many of these

are more difficult to obtain at regular temporal intervals for

extended periods of time. The incorporation of other types of

data, such as water and ice content measurements, would be

expected to reduce soil property uncertainty; however, this is

not investigated here.

The arctic site in this investigation is the polygonal tun-

dra within the Barrow Environmental Observatory (BEO). In

particular, we focus on NGEE-Arctic site “area C”, which

contains degraded permafrost characterized by ∼50 cm deep

troughs and shallow low centers. The polygonal tundra of the

BEO is classified as a lowland, cold continuous permafrost

system with a range of polygonal types and states, which
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includes intact low center polygons to degraded ice wedges

and associated high center polygons. Much of the polygonal

tundra contains an organic rich surface layer of peat overlay-

ing a silty loam soil. Due to a low evaporative demand soils

remain moist, despite relatively low annual precipitation, of

which the bulk falls in the summer months (Liljedahl et al.,

2011). The snowpack over the microtopography at the site

is redistributed to a relatively level surface by strong winds,

resulting in the deepest snowpack over troughs. Snow depth

measurements collected around the site on 2 May 2013 were

between 20 and 40 cm for centers, 10 and 20 cm for rims, and

40 and 60 cm for troughs, while the average snow density

was 326 kg m−3 (Atchley et al., 2015). While our investiga-

tion focuses on the polygonal tundra within the BEO, other

arctic landscape types are also prevalent (hillslopes, lakes,

pingos). The importance of soil properties and the dominant

influence of particular soil properties may change in land-

scapes other than polygonal tundra.

The methodology is described in Sect. 2, including the fol-

lowing: the model description (Sect. 2.1); a review of the cal-

ibration performed in Atchley et al. (2015) (Sect. 2.2); soil

property uncertainty quantification approach (Sect. 2.3); per-

mafrost projection approach (Sect. 2.4); description of per-

mafrost thaw projection metrics (Sect. 2.5); and method of

comparison to climate uncertainty (Sect. 2.6). Results are

presented in Sect. 3, including the following: the ensemble of

calibration-constrained parameter combinations (Sect. 3.1);

predictive uncertainty and trends in permafrost thaw pro-

jections (Sect. 3.2); comparison of soil property and cli-

mate model uncertainty (Sect. 3.3); and correlation analysis

between soil parameters and projection metrics (Sect. 3.4).

Conclusions and discussion of the analysis are in Sect. 4.

2 Methodology

2.1 Model

We use the Arctic Terrestrial Simulator (ATS) to numerically

solve the coupled groundwater flow, thermal, and surface en-

ergy balance equations. ATS is an integrated thermal hydro-

logical code developed specifically for Arctic permafrost ap-

plications. It implements the modeling strategy outlined by

Painter et al. (2013) using the multiphysics framework Ar-

cos (Coon et al., 2016) to manage model complexity in pro-

cess rich simulations such as these. Various components of

ATS have already been described elsewhere; therefore, only

a brief summary is provided here.

In the subsurface, the ATS solves nonlinear conservation

equations for water and energy, using a three-phase (air–

water–ice), single-component representation (Karra et al.,

2014), which is a simplification of a more general two-

component (water and representative gas phase) model

(Painter, 2011). A recently developed constitutive model

(Painter and Karra, 2014) is used to partition water between

ice and liquid phases in unsaturated or saturated conditions.

The partitioning model relates unfrozen water content below

the nominal freezing point to the unfrozen soil moisture char-

acteristic curve, thus avoiding empirical freezing curves. The

model has been successfully compared to a variety of labora-

tory experiments on freezing soils (Painter and Karra, 2014;

Karra et al., 2014; Painter, 2011). The material component

model defines thermal conductivities and is described in de-

tail in Appendix A of Atchley et al. (2015). Surface boundary

conditions use a “fill and spill approximation”, where we al-

low up to 4 cm of water to pond on the surface; all additional

ponded water may run off the domain. The surface and sub-

surface thermal hydrology systems are coupled using conti-

nuity of pressure, mass flux, temperature, and energy flux,

in a thermal extension of the coupling strategy presented in

(Coon et al., 2015a). Additionally, we use a surface energy

balance (Hinzman et al., 1998; Ling and Zhang, 2004; Atch-

ley et al., 2015) in which surface latent and sensible heat,

incoming and outgoing radiation, and conducted heat terms,

along with incoming precipitation and outgoing evaporation

are tracked. Finally, a dynamic, snow model is incorporated

for tracking snow aging and consolidation, with resulting ef-

fects on albedo and melt (Atchley et al., 2015). As described

in Sect. 4.4 of Atchley et al. (2015), the snow model accounts

for snow redistribution over the microtopography of the site

and depth hoar formation. Additional details about the snow

model are described in detail in Appendix B of Atchley et al.

(2015). Not represented within this system are carbon cy-

cle and vegetation processes, including long-term changes of

peat composition, variability in peat thickness, and evolving

microtopography due to degradation of ice wedges.

The subsurface domain is represented by a 2 cm layer of

moss, followed by a 10 cm layer of peat, and an approxi-

mately 50 m mineral soil layer. The mesh is discretized in

an increasing fashion from 1 cm at the surface to 2 m at the

bottom (∼50 m). We performed a mesh discretization analy-

sis, presented in Fig. S1 in the Supplement, to determine that

the discretization was adequate. The required climate forc-

ings for the ATS models are precipitation of snow and rain,

air temperature, wind speed, relative humidity, and incoming

short and longwave radiation. The lower boundary is set to a

constant temperature of −9.7 ◦C.

2.2 Previous calibration from Atchley et al. (2015)

The uncertainty quantification is performed around a pre-

vious calibration by Atchley et al. (2015). They used 1-D

column models representing the dominant microtopographi-

cal features (center, rim, and trough of polygonal ground) to

calibrate hydro-thermal soil parameters using soil tempera-

tures at the BEO measured by the Next-Generation Ecosys-

tem Experiments Arctic (NGEE-Arctic) team during calen-

dar year 2013. Initial conditions for the models were gen-

erated by completely freezing the fully saturated model from

below and then allowing the initial conditions to emerge over
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a 10-year spin-up simulation using daily air temperatures av-

eraged from 10 years of data as the top boundary condition.

This process allowed a shallow vadose zone to develop con-

sistent with field observations. The calibration considered

temperatures measured at 9 depths from 10 to 150 cm. The

calibration was performed in a coupled fashion where each

“model run” of the calibration consisted of simulating center,

rim, and trough column models with the same soil parame-

ter values for peat and mineral soil. This coupled calibration

identifies soil parameters that provide a generalized fit, com-

promising in a least squares sense to match the data from

all three models. An implicit assumption of the coupled cal-

ibration is that the soil properties may be adequately repre-

sented as independent of the microtopography. Atchley et al.

(2015) first calibrated subsurface properties using 2 cm deep

temperatures measured in 2013 as Dirichlet boundary con-

ditions and temperatures measured at the considered depths

as calibration targets. Then Atchley et al. (2015) performed

an additional surface/subsurface calibration to verify that the

surface energy balance model is capable of producing sur-

face temperatures consistent with measurements. The cou-

pled surface/subsurface model allows the use of future cli-

mate models as model forcings to drive hydro-thermal per-

mafrost projections.

The calibration data period is limited to calendar year 2013

since at the time of calibration, this was the only full year

of high-resolution borehole temperatures available at the site

(Atchley et al., 2015). Subsequently, year 2014 data has be-

come available. To verify that the calibration has extracted

the hydrothermal properties of the system independent of the

climatic conditions during the calibration, we evaluated the

ability of the calibrated parameters to produce forward simu-

lations that are consistent with 2014 data. This evaluation is

presented in the results section.

2.3 Soil property uncertainty quantification

We generated an ensemble of 1,153 calibration-constrained

parameter combinations by the null-space Monte Carlo

(NSMC) method (Doherty, 2004). The NSMC approach

samples from insensitive regions of the parameter space (i.e.,

the null space) determined by an eigenanalysis of parame-

ter sensitivities calculated at the calibration point. Based on

analysis of ensemble forward simulations of the calibration

year (2013) and a convergence analysis of the 95 % confi-

dence band of simulated temperatures, we consider all pa-

rameter combinations in the ensemble calibrated and equally

consistent with measured temperatures.

2.4 Permafrost projections through 2100

In order to make projections of hydro-thermal permafrost

conditions, we use the surface/subsurface model described

in Sect. 2.1. We use the Community Earth System Model

(CESM) (Gent et al., 2011) driven by the Representative

Concentration Pathway 8.5 (RCP8.5) greenhouse gas con-

centration trajectory (Moss et al., 2008) from year 2006 to

2100 as atmospheric forcings for the surface energy balance

of the model. The CESM output was adjusted to fit current

climate at the BEO. In this way, we hold the climate sce-

nario constant to isolate the effect of soil property uncer-

tainty. RCP8.5 corresponds to a business as usual warming

scenario with 8.5 Wm−2 forcing by 2100.

The projection simulations took on the order of several

hours (∼2–4 h) on a Linux cluster with 3.2 GHz processors.

We used the Model Analysis ToolKit (MATK) Python mod-

ule (http://matk.lanl.gov) to facilitate the concurrent execu-

tion of the ensemble of ATS models on Los Alamos National

Laboratory high performance computing clusters.

2.5 Permafrost metrics

Predictive uncertainty of projections is determined by com-

parison of permafrost metrics at year 2006 and for the last

decade of the projections (2091 through 2100). The metrics

include (1) ALT, (2) annual thaw depth-duration (D), (3) an-

nual mean liquid saturation (Sl), and (4) a modified Stefan

number (ST ) and are described below.

2.5.1 Active layer thickness (ALT)

In general, ALT is defined as “the layer of ground sub-

ject to annual thawing and freezing in areas underlain

by permafrost” (http://www.uspermafrost.org/glossary.php).

Permafrost has also been defined as the region of the sub-

surface that remains at or below 0 ◦C for 2 or more years.

The ALT defined that way would be the minimum of the

maximum annual thaw depth over each 2-year moving win-

dow. We use a less arbitrary definition for the ALT here as

the annual maximum thaw depth in accord with the general

definition and similar to Koven et al. (2011). Given the dis-

crete nature of our mesh, and the nonlinear nature of vertical

soil temperature profiles near 0 ◦C, we determine ALT as the

bottom of the deepest thawed mesh cell (temperature above

0 ◦C) for the year.

2.5.2 Annual thaw depth-duration (D)

ALT controls the amount of organic carbon experiencing

thaw and thus microbially induced decomposition during a

year. Because ALT is defined as the maximum thaw depth, it

does not include information on duration of thaw. To quan-

tify increasing duration of thaw in the future climate (i.e., the

effects of earlier thaw and later freeze-up) as well as increas-

ing depth, a new metric is introduced here: the annual thaw

depth-duration D, defined as

D =
1

365

∫∫
H(T (z, t))dzd, (1)

whereH is the Heaviside function, 1 if T (z, t) is above 0 ◦C,

0 otherwise, z is depth in meters, and t is time in days. The
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fraction on the right side of Eq. (1) normalizes the metric by

the 365 days in a year. We express D with units of m3 m−2

to indicate that this metric defines the volume of thawed soil

per unit area. D is a rough proxy for the potential for soil

organic matter decomposition. It merges the amount of un-

frozen soil and duration that soil is above freezing tempera-

ture for a given year. Therefore, the metric does not account

for biological activity that occurs below 0 ◦C, which is gen-

erally considered to be greatly reduced (Mikan et al., 2002;

Davidson and Janssens, 2006), but has been observed in per-

mafrost soils (Sachs et al., 2008). It is noted that, while the

annual amount of decomposition is likely correlated with D,

the two quantities are not directly proportional because soil

temperature and moisture will also change and affect the de-

composition rates in the future climates. Nevertheless, uncer-

tainty in D is of interest as it is indicative of uncertainty in

future decomposition rates.

2.5.3 Annual mean liquid saturation (Sl)

The annual mean liquid saturation Sl is defined as

Sl =

∫∫
H(T (z, t))Sl(z, t)dzdt∫∫
H(T (z, t))dzdt

, (2)

where Sl(z, t) is the liquid saturation as a function of depth

and time. Sl quantifies the spatially and temporally averaged

liquid saturation in the unfrozen soil for a given year. Note

that the denominator in Eq. (2) is the annual thaw depth-

duration metric D from above, except without dividing by

365. Liquid saturation within the active layer is of interest

because of its control on decomposition rates, coupling hy-

drology to biogeochemical fluxes.

2.5.4 Stefan number (ST )

We propose an extension of the Stefan number from the form

in Kurylyk et al. (2014) to one that incorporates intra-annual

temporal changes and stratified soil properties. The Stefan

number is the ratio of subsurface sensible to latent heat. In

the current context, this refers to the amount of subsurface

heat exchange that results in a change in temperature vs.

the amount that is consumed in the isothermal conversion of

ice to liquid water. The Stefan number provides information

about the form of subsurface energy utilization in permafrost

regions and is fundamental to a basic understanding of per-

mafrost thaw mechanisms.

In its most basic form, the Stefan number is defined as

ST =
cb1T

Lf

, (3)

where cb is the bulk specific heat of the material and Lf is the

latent heat of fusion of water (334 000 J kg−1). Kurylyk et al.

(2014) define the Stefan number for the permafrost problem

as

ST =
cbρb(Ts− Tf)

SwfρwφLf

, (4)

where ρb is the density of the thawed zone, Ts is the surface

temperature, Tf is the temperature of freezing or thawing soil

(taken as 0 ◦C), Swf is the liquid saturation in the thawed zone

that was frozen, ρw is the density of liquid water, and φ is

porosity. Kurylyk et al. (2014) use this definition to evalu-

ate the thermal regime of analytical solutions of soil thaw.

We expand this definition here to include the increased detail

available in our numerical simulations as

ST =

∫∫
cb(z)ρb(z)H

(
dT
dt

)
dT
dt

dzdt

ρiceLf

∫∫
H
(
−

dSice

dt

)(
−

dSice

dt

)
φ(z)dzdt

, (5)

where Sice is ice saturation. The integrations are performed

over the entire year (i.e., from 1 January through 31 Decem-

ber). Equation (5) expands on Eq. (4) to allow the consid-

eration of details of transient heating and cooling throughout

the year and stratified hydrothermal soil properties within the

soil profile.

2.6 Comparison to climate uncertainty

To provide a reference point for the effect and magnitude of

soil property uncertainty, we also perform ATS projections

forcing the energy balance model with atmospheric projec-

tions from CESM, INM-CM4 (INM) (Volodin et al., 2010),

BCC-CSM1-1 (BCC) (Ji, 1995), MIROC (Watanabe et al.,

2010), CanESM2 (CAN) (Verseghy, 1991), and HadGEM2-

CC (HAD) (Jones et al., 2011; The HadGEM2 Develop-

ment Team, 2011; Collins et al., 2011) climate models based

on RCP8.5 using the calibrated (fixed) soil parameters from

Atchley et al. (2015). Using the calibrated soil parameters in

these simulations isolates the effect of structural climate un-

certainty. We compare permafrost projection uncertainty due

to the NSMC ensemble of soil parameters (hydrothermal soil

property uncertainty) and to the variability between climate

models (structural climate uncertainty).

The soil property uncertainty in this analysis is parametric

and can be considered more aleatoric/probabilistic in nature.

The climate model uncertainty is epistemic in nature due to

a lack of knowledge regarding modeling of atmospheric phe-

nomena. These distinctions do limit comparisons that can be

drawn between these two uncertainties. However, the com-

parison is relevant for our purposes to provide a frame of

reference for soil property uncertainty to one of the other cur-

rent, primary sources of permafrost thaw uncertainty.

3 Results

3.1 Ensemble of calibration-constrained soil parameter

combinations

In order to determine the effect that calibration-constrained

soil property uncertainty can have on long term projections of

permafrost conditions, we performed an uncertainty quantifi-

cation around the calibrated soil parameters of Atchley et al.

www.the-cryosphere.net/10/341/2016/ The Cryosphere, 10, 341–358, 2016
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(2015). The strategy involved identifying a representative set

of parameter combinations that all produce simulated tem-

peratures that are consistent with observed temperatures. We

use null-space Monte Carlo (NSMC) (Tonkin and Doherty,

2009), a form of calibration-constrained Monte Carlo, to ac-

complish this goal. NSMC was selected based on its sam-

pling economy given the computational burden of the simu-

lations involved.

A subset of the 16 soil parameters from the calibration

of Atchley et al. (2015) are included here and presented in

Table 1. The top pressures of the center and trough profiles

from the calibration are not included here as these are inter-

nally calculated in the surface/subsurface ATS model. The

van Genuchten water retention parameters are not included

either as they were found to significantly exceed their physi-

cal boundaries during NSMC sampling. This is an indication

that these are highly insensitive parameters and do not signif-

icantly effect simulated temperatures. This may be explained

by the fact that these parameters control the shape of the wa-

ter retention curve, but that this influences thermal properties

of the soil only for a limited time near freeze up or thaw.

This leaves the 10 soil parameters listed in Table 1. The pa-

rameters 2r,peat and 2r,min are van Genuchten soil moisture

characteristic residual saturations (Van Genuchten, 1980).

Kpeat and Kmin are material thermal conductivities for peat

organic matter and mineral grains within the soil layers. Bulk

thermal conductivities are a function of material thermal con-

ductivities and are sensitive to ice, liquid, and gas satura-

tion, which is calculated within ATS as described in Ap-

pendix A of Atchley et al. (2015). Apeat,fr, Apeat,un, Amin,fr,

and Amin,un are empirical exponents describing the depen-

dence of frozen (fr) and unfrozen (un) Kersten numbers (i.e.,

ratios of partially to fully saturated thermal conductivities) to

ice and liquid saturation states, respectively (Painter, 2011).

The minimum and maximum parameter boundaries are mod-

ified from the calibration for the NSMC sampling (the pa-

rameter ranges are reduced in most cases) to physical lim-

its identified through literature review and field observations

from the BEO (Imnavait Creek and Kuparuk River, Alaska,

Hinzman et al., 1991, 1998; large-scale pan-arctic modeling

efforts, Beringer et al., 2001; Lawrence and Slater, 2008;

Capricorn Fen, Northern Quebec, Letts et al., 2000; Gail-

braith Lake, Northern Alaska, Overduin et al., 2006; Bo-

nanza Creek, Delta Junction, and Washington Creek, Inte-

rior Alaska, O’Donnell et al., 2009; Siksik Creek, North-

west Territories, Quinton et al., 2000; Franklin Bluffs, West

Dock, Imnavait Creek, Northern Alaska, Nicolsky et al.,

2009; Fort Simpson, Scotty Creek, Northwest Territories and

Wolf Creek, Yukon Territory, Zhang et al., 2010; Samoytov

Island, Lena River delta, Siberia, Chadburn et al., 2015b).

To a lesser degree, other parameters were also found to

exceed their physical boundaries during NSMC sampling.

Therefore, we used the intersection of the null space and pa-

rameter boundaries as our criterion to accept samples. The

generation of 20 000 samples within the null space resulted
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Figure 1. Histograms of calibration-constrained hydrothermal soil

parameter combinations obtained by NSMC sampling

in 1153 samples within the parameter boundaries. Samples

outside of the parameter boundaries were discarded.

Figure 1 presents histograms, while Fig. 2 presents paired

plots of the NSMC ensemble soil parameters. In the matrix

of plots in Fig. 2, parameter histograms are plotted along the

diagonal (also presented in greater detail in Fig. 1), paired

scatterplots in the lower triangle, and Pearson correlation co-

efficients are presented in the upper triangle. In Fig. 1, it is

apparent that Kpeat followed by Apeat,un are the most con-

strained parameter by the NSMC analysis. The rest of the

parameters span significant portions of their range. This in-

dicates that there are many combinations of parameters that

result in calibrated temperatures. Many of the histograms are

seen to butt up against their boundaries, indicating that these

are parameters where the extent of the null space exceeds

their range.

Applying NSMC to multiple calibration locations is often

suggested (Tonkin and Doherty, 2009). In the calibration per-

formed by Atchley et al. (2015), multiple local minima were

identified. However, based on the broad range of parameter
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Table 1. NSMC parameter minimum and maximum bounds, units, and descriptions

Parameter Min Max Units Description

φpeat 0.7 0.93 – Peat porosity

φmin 0.19 0.76 – Mineral porosity

2r,peat 0.04 0.4 m3m−3 Peat residual liquid saturation

2r,min 0.05 0.25 m3m−3 Mineral residual liquid saturation

Kpeat 0.05 0.38 Wm−1K−1 Peat thermal conductivity

Kmin 0.2 4.0 Wm−1K−1 Mineral thermal conductivity

Apeat,fr 0.1 3.0 – Frozen peat thermal conductivity shape parameter

Apeat,un 0.1 1.5 – Unfrozen peat thermal conductivity shape parameter

Amin,fr 0.1 3.0 – Frozen mineral thermal conductivity shape parameter

Amin,un 0.1 1.5 – Unfrozen mineral thermal conductivity shape parameter

combinations with limited correlations and the fact that most

parameters span most of their range, we conclude that the

NSMC analysis from this single calibration point sufficiently

captures the soil property uncertainty.

The correlations imposed by the NSMC sampling are ev-

ident by inspecting the Pearson correlation coefficients and

scatterplots in Fig. 2. The strong correlations that are present

are a result of a balancing act between parameters to achieve

a least squares fit to measured temperatures. For example,

the relatively strong negative correlation between Kpeat and

Kmin (correlation of −0.81) is due to the fact that deeper

temperatures in the soil profiles are controlled by the ef-

fective thermal conductivity. Therefore, there are numerous

(negatively correlated) combinations of Kpeat and Kmin that

produce similar effective thermal conductivities, resulting in

good matches to measured temperatures. Many other cor-

related parameter pairs are also apparent, most with signif-

icantly lower correlations. There are also many uncorrelated

parameter pairs (e.g., φpeat and Kpeat) indicating a complete

lack of interaction between the parameter pairs. The follow-

ing analysis of permafrost projection uncertainty is condi-

tional on the NSMC correlations presented here, and any

conclusions take these correlations into account. References

to Fig. 2 are made in the following sections explaining some

of the impacts of these correlations.

The range in RMSE values is from around 0.55 to 0.65 ◦C.

The accuracy of the temperature probes are ±0.1 ◦C. There-

fore, the percentage of the RMSE that may be attributable to

measurement imprecision is around 15–18 %.

Figure 3 presents the evaluation of the calibration against

2014 data and the 95 % confidence band of temperatures for

the NSMC ensemble. The evaluation is presented as time se-

ries of temperatures where the fit between 2013 measured

and calibrated temperatures can be compared to the 2014

measured and simulated temperatures. Since the 2014 mea-

sured temperatures are not included in the calibration, this

comparison serves as an evaluation of the 2013 calibration.

By inspection of the plots, it is apparent that the fit during

the evaluation period is similar to the match during the cali-

bration period (1st, 3rd, and 5th plots for the center, rim, and

trough, respectively). This provides an initial indication that

the calibration has extracted the hydrothermal relationships

from the system and can be applied to years with different

climate conditions than the calibration period.

The other plots in Figure 3 contain the corresponding 95 %

confidence bands for 2013 temperatures. We performed a

convergence analysis of the ensemble by calculating the ra-

tio of measurements included in the 95 % confidence band

as the number of ensemble members increased. We found

that the ratio stabilized after the ensemble reached more than

around 800 members. This indicates that the ensemble has

converged and that more samples are not necessary. A plot

of the convergence analysis is provided in the Supplement to

this article, Fig. S2.

The measured temperatures are within the 95 % confi-

dence band 79 % of the time for the center, 59 % for the rim,

46 % for the trough, and 61 % overall. The primary causes of

these discrepancies are due to difficulties in capturing trends

during the freeze up and thaw of the active layer. The low

values are primarily due to the 95 % confidence band missing

measured values at deep measurements apparent in Figs. S3,

S4, and S5 in the Supplement. A lack of overlap is appar-

ent during thawing (around day of year 150) and freeze up

(around day of year 320), and is particularly evident in the

rim profile in Fig. 3. These discrepancies are reduced in the

decoupled calibrations (calibrations on individual profiles)

(Atchley et al., 2015). We choose to use the coupled calibra-

tion parameters in order to obtain soil property values that

provide a generalized characterization of the soil properties

across the microtopography at the site. The expense of such a

generalized characterization is a compromised fit across pro-

files. The discrepancies are also less pronounced in the center

profile, which is the model used for the forward projections.

Many physical processes may be leading to this result that

become more pronounced in the coupled calibrations as pa-

rameter values are given less freedom to mask missing phys-

ical processes. For one, the exposed sides of the rim and sub-

sequent lateral heat flow are not explicitly modeled and may
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Figure 2. Matrix of paired plots of calibration-constrained hydrothermal soil parameter combinations obtained by NSMC sampling. Parame-

ter histograms are plotted along the diagonal, paired scatterplots in the lower triangle (2-D projections of the null space), and Pearson (linear)

correlation coefficients in the upper triangle. The histogram counts for all histograms are indicated along the ordinate axis of the upper left

plot.

at least partially explain the discrepancy. During the thaw, a

lack of advective transport of heat by liquid water through

the pore space created by sublimation during the winter (not

included in the model) may result in warmer measured tem-

peratures (Kane et al., 2001).

An initial ensemble created using Latin Hypercube Sam-

pling with 1,000 samples postprocessed to include parameter

combinations with RMSE’s below various thresholds indi-

cated that to achieve a convergent ensemble using Latin Hy-

percube Sampling would be computationally prohibitive. An

additional NSMC analysis was performed with a more re-

strictive null space (only 2 eigenvectors out of 10 included in

the null space). This ensemble did not require postprocessing

based on RMSE, since all the RMSE values were deemed

sufficiently small. This analysis resulted in over-correlated

parameters. We therefore chose a loosely constrained NSMC

(5 out of 10 eigenvectors included in null space) excluding

samples with RMSE greater than 0.65 ◦C. We considered

other RMSE cutoffs, but selected 0.65 ◦C based on achiev-

ing a confidence band inclusion ratio and ensuring that simu-

lated temperatures for 2013 were as consistent near the active

layer base as possible across the ensemble. ALT in 2013 was

around 40 cm (refer to Figs. S3, S4, and S5 in the Supple-

ment).

NSMC conventionally involves a recalibration step, where

a few Levenberg–Marquardt iterations are applied to each

NSMC sample, often using existing sensitivities from the

calibration point. Re-calibration of the ensemble members

was not performed to avoid reducing the simulated temper-

ature uncertainty (lowering the RMSE values) beyond what

we deem warranted given the uncertainties involved in mea-

surements and model structure and to avoid the introduc-

tion of bias in the ensemble. Based on the RMSE values

of the ensemble (< 0.65 ◦C) and the percentages of mea-
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Figure 3. Time-series of temperature at 40 cm depths plotted as a

function of the day of the year for the polygonal center, rim, and

trough profiles. Alternating plots include measured values from the

BEO for 2013 (red line) and 2014 (grey line) and simulated tem-

peratures from the 2013 calibration (blue line) and 2014 evaluation

(black line). Every other plot contains the 2013 95 % confidence

band for the NSMC ensemble as a shaded light blue region.

sured temperatures within the 95 % confidence band, we con-

sider all the unmodified NSMC samples to be calibrated and

do not apply this step. These observations also led to the

assumption that all NSMC samples are equally consistent

with measured temperatures as opposed to using a weight-

ing scheme. A datafile of the ensemble can be downloaded

from http://dx.doi.org/10.5440/1236647.

3.2 Permafrost thaw projection uncertainty

Figure 4 present boxplots of permafrost metrics for the first

year (2006) and the last decade (2091–2100) of the projec-

tions. Individual boxplots for each year present the predic-

tive uncertainty (due to parametric soil property uncertainty),

while comparisons between boxplots for each metric indicate

the inter-annual climate variability of the projections for the

specified climate model. We present the year 2006 as an in-

dication of the initial parametric uncertainty.

Boxplots of ALT are shown in Fig. 4a. The median ALT

increased from approximately 30 cm in 2006 to nearly 0.9 m

by the end of the century. The predictive uncertainty in ALT

also increases significantly from the beginning to later years

of the projections. The inter-annual variability of ALT pro-

jections is dependent on climate, as warmer years (e.g., 2094)

have greater ALT and larger uncertainty than cooler years.

This is apparent in Fig. 5 where the ensemble thaw depth

statistics (median and 95 % confidence band), CESM8.5 air

temperature, and ensemble snow depth statistics (95 % confi-

dence band) time series are plotted together for comparison.

Boxplots of annual thaw depth-duration (D) are presented

in Fig. 4b. The predictive uncertainty in D during the last

decade of the projections is significantly greater than for the

first year (2006). As expected, the inter-annual trends in D
and ALT are similar. Also, the uncertainty of D is relatively

larger during warmer years than cooler years, similar to ALT.

Boxplots of the annual mean liquid saturation (Sl) are pre-

sented in Fig. 4c. The predictive uncertainty in Sl actually de-

creases slightly from the first year to the last decade. Also, in

general, the last decade is slightly wetter than 2006, but only

marginally so. Therefore, this hydrothermal analysis does not

indicate that the soil moisture regime will change signifi-

cantly as permafrost thaws. Soil moisture is one of the factors

controlling the complex process of partitioning of carbon de-

composition between CO2 and CH4. However, other factors

affecting carbon decomposition not considered here could af-

fect the partitioning of carbon decomposition end products.

Boxplots of the Stefan number (ST ) are presented in

Fig. 4d. In 2006 the soil profiles for the majority of the

ensemble are latent-heat dominated. However, some Stefan

numbers are greater than 1, with values ranging from around

0.3 to 1.4 (from around 3 times the latent heat as sensible

heat to 1.4 times the sensible heat as latent heat). However,

by the last decade, nearly all Stefan numbers are 0.2 or less

(at least 5 times as much, and up to 20 times as much latent

heat as sensible heat). This indicates a fundamental change

in the way that the active layer processes energy between

the beginning and later years of the projections. The thermal

regime of the active layer becomes significantly more dom-

inated by latent heat during the projections. The amount of

energy that is utilized in creating a temperature gradient in

the soil profile becomes proportionately smaller compared to

the amount of energy consumed in the isothermal melting of

ice. This is at least partially due to the approximately 3-times

increase in the quantity of ice that is melted during later years

of the projections. Predictive uncertainty appears to decrease

from 2006 compared to the last decade, but this is likely due

to the Stefan number approaching its lower limit.

To further illustrate predictive uncertainty of the ALT pro-

jections, temperature profiles at the time of ALT for year

2100 are presented in Fig. 6. Summary statistics (median and

5th and 95th percentiles) for 2006 are presented for refer-

ence. The discrete surface temperatures categorized by day

of year (colors) reflect the fact that the surface temperature is

highly dependent on the climate/air temperature for a given

year, which is the same for all projections. Similarly, the day

of ALT for 2006 do not all occur on the same day across re-

alizations, occurring from day of the year 246 to 260. The
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Figure 4. Boxplots of projected metrics including (a) ALT, (b) an-

nual thaw depth-duration, (c) annual mean liquid saturation, and

(d) Stefan number for year 2006 and from 2091 to 2100. The bot-

tom and top of the boxes are the first and third quartiles, the red

lines are medians, the whisker lengths are 1.5 times the interquar-

tile range (50 %), and the plus symbols are outliers.

increase in median ALT from around 30 cm to around 0.9 m

from 2006 to 2100 is also apparent in this figure. The differ-

ence in the temperature regime within the profile is apparent

in these figures as well by the curvature near the surface in

most of the profiles in 2100 compared to 2006. This indi-

cates that as the climate warms and the day of year when

ALT occurs becomes later in the year, the surface temper-

ature at that time will be cooler. This increase in lag time

from the surface temperature to the active layer base is a re-

sult of the thermal wave traveling a greater distance to reach

the permafrost. This may also be due to relative changes in

the temperature gradient within the active layer and the per-

mafrost as the ALT increases leading to delayed freeze from

below.

Figure 7 shows similar plots to Fig. 6, but in this case,

statistical measures of the ensemble are plotted. Statistical

representation of the temperature profiles in Fig. 6 are plot-

ted in Fig. 7a, along with bulk thermal conductivity (Fig. 7b)

and ice (Fig. 7c), liquid (Fig. 7d), and gas (Fig. 7e) satura-

tion profiles when ALT occurs in 2006 and 2100. The vari-
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Figure 5. Thaw depth, air temperature, and snow depth time series

for years 2006 and 2091 through 2100. The black line in the top plot

is the median thaw depth of the ensemble and the blue shaded region

is the 95 % thaw depth confidence band for the ensemble. The black

region in the bottom plot is the 95 % snow depth confidence band

for the ensemble.

Figure 6. Predictive uncertainty due to soil properties for depth pro-

files of temperature for the ensemble when ALT occurs for calendar

year 2100. Color indicates the day of the year when ALT occurred

for each realization. The 2006 median and 5th and 95th percentiles

for the ensemble are plotted for reference. Day of year when ALT

occurs for realizations in 2006 is from 246 to 260 (not indicated in

the plot).

ation in thermal conductivity and saturation states further il-

lustrates the predictive uncertainty due solely to soil proper-

ties. Substantial shifts in predictive uncertainty are also ap-

parent from 2006 to 2100. In Fig. 7b, it is apparent that the

thermal conductivity in the soil profile decreases from 2006
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Figure 7. Predictive uncertainty due to soil property uncertainty for

depth profiles of ensemble statistical quantities when ALT occurs

for calendar years 2006 and 2100. The shaded regions are the 95 %

confidence intervals for 2006 (red) and 2100 (blue).

to 2100 due to the loss of the more thermally conductive

ice from the profile, thereby inhibiting the propagation of

the thermal wave. The deepening of the permafrost table is

apparent in Fig. 7c as a deepening of the ice saturated re-

gion. Note that liquid saturations for mineral soil remain at

its residual values below 0 ◦C and that residual liquid satura-

tions (2r,peat and 2r,min) are variable parameters within the

uncertainty quantification (refer to Table 1). As a result, the

ice saturation within the permafrost region is variable within

the ensemble. In Fig. 7d and e, it is apparent that the liquid

and gas saturations both increase as ice is converted to liquid

and void space becomes available with the deepening of the

permafrost table. This results in a potentially continuous gas

phase, ranging up to at least 80 cm deep across the ensemble

at the time of ALT, indicating the potential for aerobic con-

ditions at these depths. Higher liquid saturations may result

in lateral flow, a phenomenon not considered in our mod-

els. Given the polygonal micro-topography of the site, lateral

flow may be less important than in hilly terrain. However,

lateral flow may be important for the polygonal centers and

rims.

Figure 8. Comparison of (a) ALT, (b) annual thaw depth-duration,

(c) annual mean liquid saturation, and (d) Stefan number projec-

tion uncertainty due to soil property uncertainty (histograms) and

structural climate model uncertainty (circles). Histograms include

calibration-constrained ensemble values for years 2091 to 2100

(11 530 values) based on the CESM8.5 climate model. Open circles

below the histograms are values for the various climate models for

the same years using the calibrated soil parameters (10 values each,

except for BCC which has 9). NSMC ensemble 95 % confidence

band (CB) limits are indicated as vertical dashed lines.

3.3 Comparison to climate model structural

uncertainty

In this section, we provide a frame of reference to the effect

of soil property uncertainty on permafrost thaw projections
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Figure 9. Scatterplots between calibration-constrained parameters

and projected ALT for year 2100. Soil parameters associated with

peat are on the left and with mineral soil on the right (refer to col-

umn headings). Colors represent annual thaw depth-duration. The

associated Pearson correlation coefficient ρ is indicated in each plot.

The discrete nature of the ALT is due to the computational mesh

discretization.

by comparison to the uncertainty currently present in climate

models. Without such a comparison, the relative contribu-

tion of soil property uncertainty would be difficult to gauge.

Figure 8 presents histograms of projection metrics collected

Figure 10. Scatterplots between calibration-constrained parameters

and projected annual thaw depth-duration. Soil parameters associ-

ated with peat are on the left and with mineral soil on the right (refer

to column headings). Colors represent ALT. The associated Pearson

correlation coefficient ρ is indicated in each plot.

from each ensemble sample for years 2091 through 2100 (a

total of 11 530 values, i.e., 1153 samples× 10 years). This

combines the predictive uncertainty for the last decade of

the projections. The 95 % confidence band of the calibration-

constrained ensemble for each metric is indicated by dashed

vertical lines in each plot. Below the histograms are the val-

ues obtained using atmospheric forcing data from CESM,

INM, BCC, MIROC, CAN, and HAD climate models to
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Figure 11. Scatterplots between calibration-constrained parameters

and projected annual mean saturation. Soil parameters associated

with peat are on the left and with mineral soil on the right (refer

to column headings). Colors represent ALT. The associated Pearson

correlation coefficient ρ is indicated in each plot.

drive the ATS models with the calibrated (fixed) soil param-

eters for the same years, 10 values each. BCC has only 9

values as we could only obtain its output through year 2099.

These values provide a sampling of current climate model

structural uncertainty due to varying assumptions and numer-

ical representations of atmospheric phenomena.

Note that the CESM values lie within the support of

the calibration-constrained ensemble histograms in all cases.

Figure 12. Scatterplots between calibration-constrained parameters

and projected Stefan number. Soil parameters associated with peat

are on the left and with mineral soil on the right (refer to column

headings). Colors represent ALT. The associated Pearson correla-

tion coefficient ρ is indicated in each plot.

This is expected since the calibration-constrained ensemble

is forced using the CESM model. Similarly, the supports

of calibration-constrained ensemble histograms for other cli-

mate models would be expected to encompass the calibrated

soil parameter values (circles in Fig. 8) as well. This indicates

that different climate models will result in different magni-

tudes of projection uncertainty due to soil property uncer-

tainty. For example, if the calibration-constrained ensemble
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Table 2. Linear regression intercept and slope coefficients for permafrost metrics as a function of calibration-constrained parameters

Metric Parameter Intercept 95 % Conf. Int. Slope 95 % Conf. Int. R2

ALT φmin 1.66 1.65–1.67 −1.39 −1.41 –−1.37 0.95

D φmin 0.465 0.462–0.468 −0.402 −0.408 –−0.397 0.95

Sl
2r,peat 0.510 0.506–0.513 0.227 0.215–0.240 0.52

2r,min 0.452 0.450–0.455 0.702 0.687–0.717 0.87

ST φmin 0.327 0.323–0.331 −0.381 −0.387 –−0.374 0.92

was simulated using MIROC, the magnitude of the projection

uncertainty of D (Fig. 8b) could be as much as 4–5 times

larger than for CESM. This indicates the interactive effect

that soil property and structural climate model uncertainties

have on projection uncertainty and that these forms of uncer-

tainty are not easily decoupled.

These plots present both the magnitude of projection un-

certainty due to soil property uncertainty based on CESM

atmospheric projections (histograms) and to structural cli-

mate model uncertainty (circles). By comparing the ensem-

ble 95 % confidence bands for the metrics to the range of

values across the climate models, it is apparent that structural

climate model uncertainty has a greater impact on projection

uncertainty than soil property uncertainty. The ratios of the

ensemble 95 % confidence bandwidth and the range between

the minimum and maximum values for climate models are

26 % for ALT, 9 % for D, 45 % for Sl, and 80 % for ST . As

explained above, if a different climate model had been used

for the ensemble calculations, these percentages would be

different.

3.4 Dependence of permafrost projections on soil

parameters

Based on a correlation analysis, all the permafrost metrics are

positively correlated, with lower correlations between annual

mean liquid saturation and the other metrics. A paired plot of

the permafrost metrics is provided in the Supplement to this

article for additional detail (Fig. S6 in the Supplement). The

correlation between ALT and D is expected given the defi-

nition of D as a metric defining the quantity and duration of

unfrozen soil. The correlation of Sl to ALT is a result of the

deeper portions of the thicker ALT scenarios having slightly

increased levels of saturation, which is apparent in the liquid

saturation statistical profiles in Fig. 7d for year 2100. The

correlation between D and Sl can be explained by a sim-

ilar argument. Increased levels of saturation lead to higher

bulk thermal conductivity of the mineral soil layer, resulting

in thicker ALT and larger D due to increased energy flux.

Correlations between ST and the other projection metrics in-

dicate that as ALT increases, resulting in increased annual

thaw depth-duration D and annual mean liquid saturation Sl,

the system becomes increasingly latent-heat dominated. This

is due to the fact that more energy is required to thaw greater

depths of frozen soil in later years.

Figures 9, 10, 11, and 12 explore correlations between

the calibration-constrained parameters and projected metrics.

These figures contain scatterplots between hydro-thermal

soil parameters and projection metrics for year 2100. The

discrete nature of the samples with respect to ALT men-

tioned above due to the mesh discretization is also appar-

ent in Fig. 9. Pearson correlation coefficients for each soil

parameter/projection metric pair are presented on each scat-

terplot. The points are colored by D in Fig. 9 and by ALT

in Figs. 10, 11, and 12 to illustrate the correlations between

metrics (see also Fig. S6 in the Supplement). Peat parameters

are presented along the left column and mineral soil parame-

ters along the right column of each figure.

Four strong correlations are apparent in Figs. 9, 10, 11, and

12 with coefficients greater than 0.9. Many of these correla-

tions confirm our qualitative understanding of the model. It is

apparent that in many cases, projection metrics have stronger

dependencies on the mineral soil porosity (φmin) and residual

saturation (2r,min) parameters compared to the correspond-

ing peat parameters (φpeat and 2r,peat). Dependence on the

other parameters is less predictable. For example, decreasing

mineral soil porosity (φmin) increases the bulk thermal con-

ductivity of the mineral soil due to the relatively large ther-

mal conductivity of the mineral soil grains, leading to larger

ALT (top right plot in Fig. 9).

We determine linear dependency coefficients of projec-

tion metrics to calibration-constrained parameters using or-

dinary least squares. We limit the analysis to soil parame-

ter/projection metrics exhibiting moderate to strong correla-

tion (|ρ|> 0.7). Table 2 presents the intercept and slope co-

efficients from the analysis, along with their 95 % confidence

intervals. All coefficients in Table 2 are significant at the 1 %

level. The coefficient of determination (R2) is presented indi-

cating the portion of the variance explained by the regression

for each case. Note that since we use ordinary least squares

including an intercept, the R2 is simply the square of the cor-

relation coefficients (ρ) presented in Figs. 9, 10, 11, and 12.

Calibration-constrained parameters not included in Table 2

resulted in regressions with R2 less than 0.5.

The slope coefficients are emphasized in bold in the table

since these describe the first-order dependence of projection
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metrics on the calibration-constrained parameters. The slope

coefficients describe the change in ALT given a unit change

in the calibration-constrained parameter. For example, if φmin

increases by 0.1, we would estimate that ALT will decrease

by around 0.14 m. These coefficients can be useful in gaging

the impact of soil parameter changes on projection metrics.

4 Discussion and conclusions

In summary, we extended previous calibration and model

refinement work (Atchley et al., 2015) to quantify post-

calibration uncertainty in soil properties and the impact of

uncertainty on projections of permafrost thaw. Using a model

with parameters calibrated against data from the BEO, driv-

ing the NSMC ensemble of models using the CESM climate

model in the RCP8.5 scenario, and comparing against a set of

other climate models in the RCP8.5 scenario, the following

conclusions can be made.

– The median ALT and annual thaw depth-duration (D)

of the calibration-constrained ensemble increase by

around a factor of 3 by the end of the century.

– The effect of soil property uncertainty based on CESM

atmospheric forcings is approximately 26 % of the un-

certainty caused by climate model structural uncertainty

for ALT, 9 % for D, 45 % for Sl, and 80 % for Stefan

number.

– Predictive uncertainty of ALT and D due to soil prop-

erty uncertainty increase significantly from the first year

to the last decade of the projections.

– Predictive uncertainty of soil moisture content due to

soil property uncertainty is not significantly changed by

the end of the century.

– Predictive uncertainty of the Stefan number due to soil

property uncertainty decreases, but this is at least par-

tially due to this metric approaching its lower boundary

in the last decade.

– The manner in which the active layer processes incom-

ing energy changes significantly. The active layer moves

to an increasingly latent-heat-dominated system due to

larger quantities of frozen ground thawed each year.

– ALT, D, and ST are highly dependent on φmin, while

Sl is highly dependent on2r,min and moderately depen-

dent on 2r,peat.

Efforts to quantify the relative roles of soil property vs. cli-

mate model uncertainty have only recently begun. We found

that the effect of soil property uncertainties can be reduced to

levels lower than the uncertainty generated by uncertainties

in climate model structure through a process of calibration

to field observations, model structural refinement (Atchley

et al., 2015), and calibration-constrained uncertainty analy-

sis. However, we had the advantage of high-resolution data

from an unusually well-characterized site, which suggests

that the residual uncertainty identified here using tempera-

ture data only is close to a practical limit.

The quantitative results shown here are specific to the

site, available data, RCP trajectory assumption, and climate

model. Nevertheless, the approach presented here is antic-

ipated to be useful for understanding the impact that addi-

tional data collection might have on reducing uncertainty

associated with other high-latitude permafrost sites. Poten-

tial directions for future work include the investigation on

the impact that longer data streams and other types of ob-

servation might have on reducing uncertainties. In particu-

lar, the calibration against borehole temperature data was un-

informative concerning certain water retention properties of

the soils (van Genuchten α and m parameters). Therefore,

co-located measurements of soil moisture would be useful

to help constrain those parameters, and may reduce the un-

certainty associated with the other soil properties as well.

Moreover, given the known spatial variability in soil prop-

erties across the pan-Arctic (Hinzman et al., 1998; Rawl-

ins et al., 2013), calibration-constrained soil property uncer-

tainty across larger spatial scales warrants further investiga-

tions.

The Supplement related to this article is available online

at doi:10.5194/tc-10-341-2016-supplement.
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