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Abstract. Airborne light detection and ranging (lidar) mea-

surements carried out in the southern Sierra Nevada in

2010 in the snow-free and peak-snow-accumulation peri-

ods were analyzed for topographic and vegetation effects on

snow accumulation. Point-cloud data were processed from

four primarily mixed-conifer forest sites covering the main

snow-accumulation zone, with a total surveyed area of over

106 km2. The percentage of pixels with at least one snow-

depth measurement was observed to increase from 65–90

to 99 % as the sampling resolution of the lidar point cloud

was increased from 1 to 5 m. However, a coarser resolu-

tion risks undersampling the under-canopy snow relative to

snow in open areas and was estimated to result in at least

a 10 cm overestimate of snow depth over the main snow-

accumulation region between 2000 and 3000 m, where 28 %

of the area had no measurements. Analysis of the 1 m grid-

ded data showed consistent patterns across the four sites,

dominated by orographic effects on precipitation. Elevation

explained 43 % of snow-depth variability, with slope, as-

pect and canopy penetration fraction explaining another 14 %

over the elevation range of 1500–3300 m. The relative impor-

tance of the four variables varied with elevation and canopy

cover, but all were statistically significant over the area stud-

ied. The difference between mean snow depth in open versus

under-canopy areas increased with elevation in the rain–snow

transition zone (1500–1800 m) and was about 35± 10 cm

above 1800 m. Lidar has the potential to transform estima-

tion of snow depth across mountain basins, and including lo-

cal canopy effects is both feasible and important for accurate

assessments.

1 Introduction

In the western United States, ecosystem processes and wa-

ter supplies for agricultural and urban users depend on the

mountain snowpack as the primary source of late-spring and

early-summer streamflow (Bales et al., 2006). Knowledge of

spring snowpack conditions within a watershed is essential if

water availability and flood peaks following the onset of melt

are to be accurately predicted (Hopkinson et al., 2001). Cal-

ifornia’s multi-billion-dollar agricultural economy as well

as multi-trillion-dollar urban economy depend on these pre-

dictions (California Department of Water Resources, 2013).

Both topographic and vegetation factors are important in in-

fluencing the snowpack conditions, as they closely interact

with meteorological conditions to affect precipitation and

snow distribution in the mountains (McMillen, 1988; Rau-

pach, 1991; Wigmosta et al., 1994). However, mountain pre-

cipitation is poorly understood at multiple spatial scales be-

cause it is governed by processes that are neither well mea-

sured nor accurately predicted (Kirchner et al., 2014). Snow

accumulation across the mountains is primarily influenced

by orographic processes, involving feedbacks between atmo-

spheric circulation and terrain (Roe, 2005; Roe and Baker,

2006). In most forested regions, snow distribution is highly

sensitive to vegetation structure (Anderson, 1963; Revuelto

et al., 2015; Musselman et al., 2008), and canopy inter-

ception, sublimation and unloading result in less accumula-

tion of snow beneath the forest canopies in comparison with

canopy gaps (Berris and Harr, 1987; Golding and Swanson,

1986; Mahat and Tarboton, 2013; Sturm, 1992).
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The Sierra Nevada serves as a barrier to moisture mov-

ing inland from the Pacific, has an ideal orientation for pro-

ducing orographic precipitation, and thus exerts a strong in-

fluence on the upslope amplification of precipitation (Colle,

2004; Rotach and Zardi, 2007; Smith and Barstad, 2004).

Recent studies provide insight on how orographic and topo-

graphic factors affect snow depth in the Alps (Grünewald et

al., 2013, 2014; Lehning et al., 2011), suggesting that similar

studies could be extended to the Sierra Nevada. And among

the forested regions of the mountains, the mixed-conifer and

subalpine zones cover most of the high-elevation, seasonally

snow-covered area.

In situ, operational measurements of snow water equiv-

alent (SWE) in the Sierra Nevada come from monthly

manual snow surveys and daily snow-pillow observations

(Rosenberg et al., 2011). Meteorological stations and remote-

sensing products also provide estimates of precipitation and

snow accumulation (Guan et al., 2013). Cost, data coverage,

accuracy (Julander et al., 1998) and basin-scale representa-

tiveness are issues for in situ monitoring of SWE in moun-

tainous terrain (Rice and Bales, 2010). Satellite-based remote

sensing, such as MODIS, has been used to map snow cover-

age in large or even global areas. However, it only provides

snow-coverage information in open areas, and no direct in-

formation on snow depths (Molotch and Margulis, 2008).

The SNOw Data Assimilation System (SNODAS) integrates

data from satellite and in situ measurements with weather-

forecast and physically based snow models, providing grid-

ded SWE and snow-depth estimates (Barrett, 2003). How-

ever, since SNODAS has not been broadly assessed (Clow

et al., 2012), its potential for evaluating snow distribution in

mountain areas remains uncertain. Also, owing to its 1 km

spatial resolution, the snow depth that SNODAS provides is

a mixed representation of both open and canopy-covered ar-

eas.

An orographic-lift effect is observable in most of the above

data (Howat and Tulaczyk, 2005; Rice et al., 2011), and a

binary-regression-tree model using topographic variables as

predictors has also been used for estimating the snow depth

in unmeasured areas (Erickson et al., 2005; Erxleben et al.,

2002; Molotch et al., 2005). However, regression coefficients

could not be estimated accurately for most of the explana-

tory variables, except for elevation, and the consistency of the

orographic trend as well as the relative importance of these

variables is still unknown owing to the lack of representative

measurements across different slopes, aspects and canopy

conditions. Also, the stability of the variance explained by

the model needs to be tested with denser measurements.

In recent years, airborne lidar has been used for high-

spatial-resolution distance measurements (Hopkinson et al.,

2004) and has become an important technique for acquir-

ing topographic data with sub-meter resolution and accuracy

(Marks and Bates, 2000). Therefore, lidar provides a poten-

tial tool to help understand spatially distributed snow depth

across mountain regions. With multiple returns from a sin-

gle laser pulse, lidar has also been used to construct veg-

etation structures as well as observe conditions under the

canopy, which helps produce fine-resolution digital elevation

models (DEMs), vegetation structures and snow-depth infor-

mation. However, the snow depth under canopy can not al-

ways be measured because of the signal-intensity attenuation

caused by canopy interception (Deems and Painter, 2006;

Deems et al., 2006). A recent report applied a univariate-

regression model to the snow depth measured in open areas

using lidar, with a high-resolution DEM used to accurately

quantify the orographic-lift effect on the snow accumulation

just prior to melt (Kirchner et al., 2014). From this analysis it

could be expected that lidar data might also help explain ad-

ditional sources of snow distribution variability in complex,

forested terrain.

The objective of the work reported here is to improve our

understanding of how topographic and vegetation attributes

affect snow accumulation in mixed-conifer forests. Using li-

dar data from four headwater areas in the southern Sierra

Nevada, we addressed the following three questions. First,

in forested mountain terrain what percentage of pixels have

ground returns and thus provide snow-depth measurements

at 1 m and coarser sampling resolutions, and what potential

error is introduced by undersampling of snow under dense

canopies? Second, what new information about orographic

effects on precipitation versus accumulation is provided by

these lidar data? Third, what is the effect of slope, aspect and

canopy penetration fraction on snow accumulation, relative

to elevation, and are effects consistent across sites?

2 Methods

2.1 Study areas

Our study areas are located in the southern Sierra Nevada,

approximately 80 km east of Fresno, California (Fig. 1).

The four headwater-catchment research areas – Bull Creek,

Shorthair Creek, Providence Creek and Wolverton Basin

– were previously instrumented, including meteorological

measurements, in order to have a better knowledge of the

hydrologic processes in this region (Bales et al., 2011; Hun-

saker et al., 2012; Kirchner et al., 2014). The sites were cho-

sen as part of multi-disciplinary investigations at the South-

ern Sierra Critical Zone Observatory, and they are also the

main instrumented sites in the observatory. Wolverton is ap-

proximately 64 km southeast of the other three sites (Fig. 1)

and is located in Sequoia National Park. Both snow-on and

snow-off airborne lidar were flown in 2010 (Table 1) over

these sites. The elevation of the survey areas is from 1600 to

3500 m elevation. Vegetation density generally decreases in

high-elevation subalpine forest, with Wolverton also having

a large area above treeline (Goulden et al., 2012). The pre-

cipitation has historically been mostly snow in the cold and

wet winters for elevations above 2000 m, and a rain–snow
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Table 1. Lidar data collection information.

Bull Shorthair Providence Wolverton

Snow-off flight date 15 August 2010 13 August 2010 5 August 2010 13–15 August 2010

Snow-on flight date 24 March 2010 23 March 2010 23 March 2010 21–22 March 2010

Area, km2 22.3 6.8 18.4 58.9

Mean elevation, m 2264 2651 1850 2840

Elevation range, m 1925–2490 2436–2754 1373–2207 1786–3523

Canopy cover, % 51 43 62 30

Shorthair

Providence

Bull

Wolverton

Figure 1. Study area and lidar footprints. Left: California with

Sierra Nevada. Center: zoomed view to show the locations of li-

dar footprints. Right: elevation and 200 m contour map (100 m for

Bull) of lidar footprints.

mix below 2000 m, where most of Providence is located. The

comparison between Providence and the other sites can help

in assessing if observed trends are consistent above and be-

low the rain–snow transition.

2.2 Data collection

All airborne lidar surveys were performed by the National

Center for Airborne Laser Mapping (NCALM) using Optech

GEMINI Airborne Laser Terrain Mapper. The scan angle

and scan frequency were adjusted to ensure a uniform along-

track and across-track point spacing (Table 2), with six GPS

ground stations used for determining aircraft trajectory. The

snow-on survey date was close to 1 April, which is used by

operational agencies as the date of peak snow accumulation

for the Sierra. Since the snow-on survey required four days

to cover the four study areas, time-series in situ snow-depth

data measured continuously from Judd Communications ul-

Table 2. Flight parameters and sensor settings.

Flight parameters Equipment settings

Flight altitude 600 m Wavelength 1047 nm

Flight speed 65 m s−1 Beam divergence 0.25 mrad

Swath width 233.26 m Laser PRF 100 kHz

Swath overlap 50 % Scan frequency 55 Hz

Point density 10.27 m−2 Scan angle ±14◦

Cross-track resolution 0.233 m Scan cutoff 3◦

Down-track resolution 0.418 m Scan offset 0◦

trasonic depth sensors at Providence, Bull and Wolverton

were used to estimate changes in snow depth during the

survey period. While no snow accumulation was observed,

snowpack densification and melting observed from the time-

series data were taken into considerations (Hunsaker et al.,

2012; Kirchner et al., 2014). The snow-off survey was per-

formed in August after snow had completely melted out in

the study areas.

2.3 Data processing

Raw lidar data sets were pre-processed by NCALM and

are available from the NSF OpenTopography website (http:

//opentopography.org) in LAS format. The LAS point cloud,

including both canopy and ground-surface points, are stored

and classified as ground return and vegetation return. The

1 m resolution digital elevation models, generated from the

lidar point-cloud data sets, were downloaded from the Open-

Topography database and further processed in ArcMap 10.2

to generate 1 m resolution slope, aspect and northness raster

products. Northness is an index for the potential amount of

solar radiation reaching a slope on a scale of −1 to 1, calcu-

lated from

N = sin(S)× cos(A), (1)

where N is the northness value; S is the slope angle and A is

the aspect angle, both in degrees. For aspect angle A, north

is either 0 or 360◦. Northness is also the same as the aspect

intensity (Kirchner et al., 2014) with 0◦ focal aspect. Since

in this analysis the snow-depth comparison is only discussed

between north- and south-facing slopes, northness is used in-

stead of aspect intensity for simplification. To construct the

1 m resolution canopy-height models from lidar data, the 1 m

www.the-cryosphere.net/10/257/2016/ The Cryosphere, 10, 257–269, 2016
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Figure 2. Subtracting the digital elevation model from the digital surface model will result in the canopy-height model. In this study the

height of shrub vegetation is assumed smaller than 2 m, while tree vegetation is taller than 2 m.

digital elevation models were subtracted from the 1 m digital

surface models that were rasterized from the first return of

the laser pulses (Fig. 2).

The snow depths were calculated directly from the snow-

on lidar data. By referring to canopy-height models, all

ground points in snow-on lidar data sets were classified as

under canopy or in open areas. That is, if the ground point

was coincident with canopy of > 2 m height, it was classi-

fied as under canopy, and otherwise in the open; i.e., a 2 m

height was used to classify shrubs versus trees. In this study

we assumed that shrubs did not affect the snow depth. Af-

ter classification, snow depths were calculated by subtracting

the values in the digital elevation model from the snow-on

point-measurement values. The calculated point snow-depth

data were further assigned into 1 m raster pixels, averaged

within each pixel, formatted and then gap-filled by interpola-

tion with pixel values around it. Since not all laser pulses that

generated canopy-surface returns had ground returns (Fig. 3)

and the ground-return percentage varied across the transition

from the tree trunk to the edge of the canopy, interpolation

was not applied to data under the canopy. The error rate of

the calculated snow depth should be mainly from the instru-

mental elevation error, which is about 0.10 m (Kirchner et al.,

2014; Nolan et al., 2015).

2.4 Penetration fraction

The open-canopy fraction is a factor that represents the for-

est density above a given pixel and is used to describe the in-

fluence of vegetation on snow accumulation and melt. How-

ever there is no algorithm to directly extract this information

from lidar data. Here we use a novel approach that we call

penetration fraction to approximate the open-canopy fraction

from the lidar point cloud. With it we were able to quan-

tify the impact of canopy on snow depth using linear regres-
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Figure 3. Normalized histogram of the number of ground points for

(a) under-canopy and (b) open 1 m pixels.

sion. Penetration fraction is the ratio of the number of ground

points to number of total points within each pixel (Fig. 4a).

Whereas pixels are generally classified as under canopy or in

the open (Kirchner et al., 2014), penetration fraction is an in-

dex of fraction open in a pixel. Because the electromagnetic

radiation from both lidar and sunlight beams is intercepted

The Cryosphere, 10, 257–269, 2016 www.the-cryosphere.net/10/257/2016/
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Figure 4. (a) Dividing the number of ground points of each 1 m pixel by the total number of points in the pixel gives the penetration fraction

of the local pixel. (b) Sensitivity of the smoothed penetration fraction to the smoothing radius.

by canopies, the open-canopy fraction is used here as an in-

dex to represent the fraction of sunlight radiance received

on the ground under vegetation. Therefore, penetration frac-

tion of lidar is actually another form of estimating the open-

canopy fraction (Musselman et al., 2013). However, under-

canopy vegetation can also intercept the lidar beam, causing

a bias. To eliminate this bias, the canopy-height model was

used to check if the pixel was canopy covered by using the

2 m threshold value; if not, the local penetration fraction of

the pixel was reset to 1 because the open-canopy fraction of

a pixel could not be entirely represented by the penetration

fraction. A spatial moving-average process was applied using

a 2-D Gaussian filter to account for the effect of the vegeta-

tion around each pixel. Since the radius of the Gaussian filter

needs to be specified by the user, we tested the sensitivity of

smoothing results to the radius of the filter and found it is

not sensitive when the radius is greater than 1.5 m (Fig. 4b).

Therefore, we specified a radius of 5 m in the Gaussian filter.

2.5 Statistical analysis

The 1 m resolution snow-depth raster data sets were resam-

pled into 2, 3, 4 and 5 m resolution. The percentage of pixels

with snow-depth measurements was calculated by using the

number of pixels with at least one ground return divided by

the total number of pixels inside each site. The sensitivity

of the percentage changes across different resampling reso-

lutions and the consistency of the percentages across study

sites at the same resampling resolution were analyzed by vi-

sualizing the percentages against sampling resolutions at all

sites.

Using elevation, slope, aspect, penetration fraction and

snow depth retrieved from lidar measurements, topographic

and vegetation effects on snow accumulation were observed

using residual analysis. Owing to orographic effects, there

is increasing precipitation along an increasing elevation gra-

dient in this area (Kirchner et al., 2014). Therefore, eleva-

tion was selected as the primary variable to fit the linear-

regression model for calculating the residual of snow depth.

All snow-depth measurements from lidar were first separated

as being either under canopy or in open areas, and then they

were binned by elevation of the location where they were

measured, with a bin size of 1 m elevation. As each elevation

band had hundreds of snow-depth measurements after bin-

ning, the average of all snow depths was chosen as the repre-

sentative snow depth, and the standard deviation calculated

to represent the snow-depth variability within each elevation

band. Coefficients of determination between snow depth and

elevation of each site were calculated by linear regression.

The fitted linear-regression model of each site was applied to

www.the-cryosphere.net/10/257/2016/ The Cryosphere, 10, 257–269, 2016
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Table 3. Linear-regression results, averaged snow depth vs. elevation at four sites.

Bull Shorthair Providence Wolverton

R2, open 0.968 0.797 0.931 0.914

R2, vegetated 0.978 0.737 0.921 0.972

Slope, open, cm per 100 m 21.6 16.1 37.8 15.3

Slope, vegetated, cm per 100 m 19.9 13.1 26.0 13.4

the DEM to estimate the snow depth. The residual of snow

depth was calculated by subtracting the modeled snow depth

from lidar-measured snow depth. The slope, aspect and pene-

tration fraction were binned into 1◦ slope, 1◦ aspect and 1 %

penetration-fraction bins, with snow-depth residuals corre-

sponding to each bin of every physiographic variable aver-

aged and visualized along the variable gradient to check the

existence of these physiographic effects.

For the variables found to correlate with the snow accu-

mulation, the relative importance of each variable was calcu-

lated using the Random Forest algorithm (Breiman, 2001;

Pedregosa et al., 2011). A multivariate linear-regression

model was also applied to quantify the influence of the vari-

ous physiographic variables on the snowpack distribution.

To calculate the snow-depth difference between open and

canopy-covered areas along an elevation gradient, the 1 m

resolution snow-depth data of the two conditions, open and

canopy covered, were smoothed separately against eleva-

tion using locally weighted scatterplot smoothing (LOESS)

(Cleveland, 1979). The snow-depth difference was then cal-

culated by subtracting the smoothed canopy-covered snow

depth from that in the open.

3 Results

The percentage of pixels having snow-depth measurements

is sensitive to the sampling resolution used in processing

the lidar point cloud to produce the raster data. Values go

from about 65–90 % across the four sites for 1 m resolution

and gradually increase to 99 % at 5 m resolution (Fig. 5).

Note that the percentage increases in going from the lower-

to higher-elevation sites, reflecting lower forest density at

higher elevation.

The snow depths in open areas and under canopy show

consistent increases with elevation across all sites (Fig. 6a

and b). Although orographic effects may vary between in-

dividual storms across sites, these data suggest that the cu-

mulative effect of the four main snowfall events prior to the

lidar flight (Kirchner, 2013) resulted in similar patterns. The

variability within an elevation band for open areas (Fig. 6c)

is highest at about 1500 m and gradually decreases within

the rain–snow transition up to 2000 m elevation. However,

above 2000 m the pattern of variability with increasing eleva-

tion varies across sites. Note that values at the upper or lower
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Figure 5. Sensitivity of the percent of pixels with snow depth mea-

sured to the sampling resolution used in processing the lidar point

cloud at each site.

ends of elevation at each site have few pixels and thus may

not have a representative distribution of other physiographic

attributes (Fig. 6d). The forested area of all four sites com-

bined spans the rain–snow transition zone in lower mixed-

conifer forest through snow-dominated subalpine forest, with

significant areas above treeline higher up.

For each individual site, a least-squares linear regression

of averaged snow depth versus elevation was used to investi-

gate the spatial variability of snow depth (Table 3). The me-

dian elevation of the three sites increases from Providence to

Bull to Shorthair. The lowest elevation at Providence Creek is

less than 1400 m, and snow depth increases steeply in this re-

gion at a rate of 38 cm per 100 m in open areas and 28 cm per

100 m under the canopy. Bull Creek has an elevation range

of 2000–2400 m, which is slightly higher than Providence,

and has snow depth increasing at 21 cm per 100 m in open

areas and 19 cm per 100 m under the canopy. For the Short-

hair Creek site, which is the highest of the three, the snow

depth increases at 17 cm per 100 m in open areas and 16 cm

per 100 m under the canopy. Wolverton is 64 km further south

and spans a wider elevation range, going from the rain–snow

transition in mixed conifer, to subalpine forest, to some area

above treeline. The average snow-depth increase is smallest

among all four study sites, 15 cm per 100 m in open areas

and 13 cm per 100 m under the canopy. Unlike the other three

The Cryosphere, 10, 257–269, 2016 www.the-cryosphere.net/10/257/2016/
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Figure 6. LOESS-smoothed snow depth with northness color-coded

scatterplot of raw-pixel snow depth against elevation for (a) open

and (b) under-canopy areas. (c) Standard error of the snow depth

within each 1 m elevation band for open area. (d) Total area of each

elevation band for both open and under-canopy areas. Values above

3300 m are not shown, where there are few data.

lower-elevation sites, the snow depth at Wolverton decreases

above 3300 m elevation, and these high-elevation data were

not included in the linear regression. The amount of area

above this elevation is relatively small, and factors such as

wind redistribution and the exhaustion of perceptible water

can also affect snow depth at these elevations (Kirchner et

al., 2014).

The residuals for snow in open areas were further ana-

lyzed for effects of slope, aspect and penetration fraction.

The snow-depth residuals are negative and larger in mag-

nitude on steeper slopes, i.e., less snow on steeper slopes

(Fig. 7a). The residual also changes from positive to nega-

tive with aspect, reflecting deeper snow on north-facing ver-

sus south-facing slopes (Fig. 7b). The topographic effect can

also be seen from the color pattern of northness observed in

the scatterplots (Fig. 6a and b). The residual also changes

from negative 20–40 cm to positive 20–40 cm as penetration

fraction increases from 0 to 80 %, reflecting less snow under

canopy (Fig. 7c). Considering all of these variables together,

elevation is the most important variable at all sites except

for Shorthair, which has a relatively small elevation range

(Fig. 8). Aspect exerts a stronger influence than do slope

and penetration fraction in open areas. However, for under-

canopy areas, penetration is more dominant than aspect at

two sites. The multivariate regression model was fitted to the

data, with aspect transformed into a 0 to 180◦ range (north

to south). Fitted models can be represented as the following

two equations for open area and under canopy, respectively:

SD= 0.0011× elevation− 0.0112× slope

− 0.0057× aspect+ 0.1802× penetration, (2)

SD= 0.0009× elevation− 0.0128× slope

− 0.0046× aspect+ 0.9891× penetration, (3)

where SD is snow depth and p values of all regression co-

efficients of the two models are all smaller than 0.01. The

effects quantified in these two equations are mixtures of in-

fluences that affected both precipitation and post-deposition

processes.

The snow-depth difference between open and canopy-

covered areas was calculated with elevation from locally

smoothed snow depth. It generally increases from near zero

at 1500 m, where there is little snow but dense canopy, to

40 cm in the range of 1800–2000 m, and it varies from near

zero to 60 cm at higher elevations where snow is deeper and

the canopy less dense (Fig. 9). It is apparent that the snow-

depth difference increases with elevation in the rain–snow

transition zone but lacks a clean pattern along either elevation

gradient or penetration-fraction gradient when the elevation

is higher.

4 Discussion

4.1 Sensitivity of measurements to sampling resolution

The results of analyzing the percentage of pixels with snow

depth measured by lidar at different sampling resolutions il-

lustrate that even high-density airborne lidar measurements

do not have 100 % coverage of the surveyed area at 1 m res-

olution, especially in densely forested areas. According to

the snow-depth difference between snowpack in open areas

and under canopy, a trade-off between accuracy and coverage

happens when adjusting the resolution; lower sampling res-

olutions can introduce overestimation into the results. This

is because, upon averaging, sub-pixel area under the canopy

that was not measured may be represented by the open area

that is measured, introducing an overestimation error into

www.the-cryosphere.net/10/257/2016/ The Cryosphere, 10, 257–269, 2016
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predicting the snow depth from each site for (a) open area and

(b) under-canopy area.

the averaged snow depth of the pixel. In order to estimate

that bias for each pixel, we would need more under-canopy

snow-depth measurements at 1 m resolution. In our survey

areas, 28 % of the total area in the main snow-producing el-

evations of 2000–3000 m has no returns at 1 m resolution.

Assuming that using open rather than under-canopy values

would introduce a bias of at least 35 cm for these unmea-

sured areas, a 2 m mean snow depth will have about 10 cm

or 5 % overestimation over the whole area. The overestima-

tion could be higher if the area with no returns represents
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Figure 9. (a) Snow-depth difference along elevation for each site

calculated from the LOESS-smoothed snow depth. (b) Average

penetration fraction versus elevation for each site.

denser canopy with less snow than the under-canopy areas

measured, and it could also be more significant for shallower

snowpacks. It would also be higher for a less-dense point

cloud, which would introduce uncertainty into both percent-

age canopy cover and open versus under-canopy snow-depth

differences. Therefore, the sampling resolution for process-

ing the lidar point cloud needs to be chosen according to the

objective and accuracy tolerance of the study, and the aver-

age overestimation bias needs to be corrected for the study

results.

4.2 Physiographic effects on snow accumulation

Below 3300 m, the increasing trend of snow accumulation

with elevation was observed for all sites (Fig. 6). Linear

regression is applicable to model the relationship between

snow depth and elevation when the study area has a broad
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Figure 10. Normalized density of estimation bias for (a) open and (b) under-canopy areas. Estimation bias boxplots of using one general

linear-regression model with all sites’ data combined and four linear-regression models of each individual site for (c) and open (d) under-

canopy areas.

Table 4. Coefficients of determination of univariate and multivariate

linear-regression models.

Univariate Multivariate

model model

R2 R2

Bull 0.23 0.37

Shorthair 0.06 0.32

Providence 0.39 0.53

Wolverton 0.16 0.38

All sites 0.43 0.57

elevation range. This holds true for all of our sites with the

exception of Shorthair, where the elevation range is about

200 m and the coefficient of determination for this linear-

regression model is much smaller than for the other three

sites, which have ranges greater than 500 m. The bias of

mean snow depth in the same elevation band between dif-

ferent sites is acceptable if the standard error is added to or

subtracted from the mean (Fig. 6a–c). The data-collection

time, spatial variation and variations of other topographic

features can also introduce bias across sites. However, as

data-collection time in this study only differed by a few days,

in situ snow-depth sensor data suggest that the melting and

densification effect was under 2 cm (https://czo.ucmerced.

edu/dataCatalog_sierra.html). As for other topographic vari-

ables, the observation of a slope effect, shown as the trend

lines in Fig. 7a and the negative regression coefficients of the

two linear-regression models, could be explained by steeper

slopes having higher avalanche potential, fewer trees and

thus more wind; thus some snow is more likely to be lost

from these slopes. Snowpack located in south-facing slopes

receives higher solar radiation, with the snowmelt being ac-

celerated (Kirchner et al., 2014). This explains the trends ob-

served in Fig. 7b and the negative regression coefficients of

the multivariate models. Although lidar has measurement er-

rors caused by slope and aspect (Baltsavias, 1999; Deems et

al., 2013; Hodgson and Bresnahan, 2004), the error is not

able to be quantitatively traced back to each variable, and we

assumed that its influence on the trends could be neglected.

As canopy interception results in reduced snow depth un-

der canopy, the snow-depth residuals are found changing

from negative to positive with penetration fraction and the

regression coefficients are positive (Fig. 7c). The multivari-

ate linear-regression model built from the lidar data is a sig-

nificant improvement, as the variability of the snow distribu-

tion could explain 15–25 % more than the univariate linear-

regression model with elevation as the only predictive vari-

able (Table 4) and the estimation bias has a narrower dis-

tribution (Fig. 10a and b). Also, fitting an individual linear-

regression model for each site is slightly better than using a

general model with all data combined (Fig. 10c and d). This

may be because an individual model can capture regional

micro-climate within a site better than a general model. The

opposite trend of the relative importance of predictive vari-

www.the-cryosphere.net/10/257/2016/ The Cryosphere, 10, 257–269, 2016
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ables observed in Shorthair is because it is a relatively flat

site (Figs. 1 and 8), which implies that topographic variables

other than elevation need to be considered when studying ar-

eas with small elevation ranges.

4.3 Vegetation effects on snow distribution along

elevation

Under-canopy snow distribution is governed by multiple fac-

tors that affect the energy environment, as observed by melt-

ing (Essery et al., 2008; Gelfan et al., 2004) and accumula-

tion rates (Pomeroy et al., 1998; Schmidt and Gluns, 1991;

Teti, 2003). Our results show different responses when com-

paring the snow-depth difference between open and canopy-

covered areas between study sites (Fig. 9a). In the rain–snow

transition zone from 1500 to 2000 m at Providence we see a

sharp linear increase between open and under-canopy snow

depth that is likely governed by the under-canopy energy

environment and the canopy-interception effect on precip-

itation, which accelerate snowmelt and prevent accumula-

tion of under-canopy snow. Above 2000 m, the snow-depth

difference observed at Bull and Shorthair stabilized around

40 and 20 cm, respectively, with fluctuations less than 10 cm

along elevation. Breaking from this pattern, the large dip in

snow-depth difference, down to 10 cm, observed at Wolver-

ton at elevations of 2250–2750 m deviates from the 35–40 cm

plateau. Also, the snow-depth difference at Shorthair stabi-

lizes around 20 cm, which is 20 cm lower than the stabilized

value at Bull. Based on the scatterplots shown in Fig. 6a and b

that are color-coded by northness, at an elevation range of

2300–2700 m, there are a lot more data points with both low

snow depth and extremely negative northness in the open

area than under the canopy, which implies that anisotropic

distribution of other topographic variables is affecting the

snow-depth difference. This is further shown by filtering out

the data points not within a small certain range (−0.1 to 0.1)

of northness and then reproducing Fig. 9a using the filtered

data. As presented in Fig. 11, it is apparent that the large

dip at Wolverton is flattened out owing to a canopy effect

of around 25–45 cm. Thus a sigmoidal function was used to

characterize the snow-depth difference changes with eleva-

tion, excluding topographic interactions. The interactions be-

tween topographic variables and vegetation are most likely

attributable to the under-canopy snowpack being less sen-

sitive to solar radiation versus snowpack in the open area

(Courbaud et al., 2003; Dubayah, 1994; Essery et al., 2008;

Musselman et al., 2008, 2012).

In spite of filtering the topographic effect, there is still

about a 20 cm magnitude of fluctuation in the snow-depth dif-

ference, which might be attributed to various clearing sizes of

open area at different locations and various vegetation types

in forests (Hedstrom and Pomeroy, 1998; Pomeroy et al.,

2002; Schmidt and Gluns, 1991); however, we were not able

to explore these features of the sites from the current lidar

data set.
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Figure 11. Snow-depth difference between open and under-canopy

areas versus elevation, calculated as difference between raw 1 m

pixel snow depth and northness-filtered 1 m pixel snow depth, to-

gether with the sigmoidal fit of the snow-depth difference.

5 Conclusions

The rasterized lidar data show that the percentage of pixels

with at least one ground return, and thus a snow-depth mea-

surement, increases from 65–90 to 99 % as the sampling res-

olution increases from 1 to 5 m. However, this coarser resolu-

tion may mask undersampling of under-canopy snow relative

to snow in open areas. With about 28 % of the area in dense

mixed-conifer forest having no returns, using snow depths in

open areas as estimates of snow depth under dense canopies

would result in at least a 10 cm overestimation error in the

average snow depth in the main snow-producing elevations

of 2000–3000 m.

Using lidar data gridded at 1 m resolution, average snow

depth within each 1 m elevation band shows a strong correla-

tion with elevation and consistent pattern across all sites. The

linear-regression models show that elevation explains 43 %

of snow-depth variability and that over 57 % of the variability

is explained when including all physiographic variables. This

indicates that snow distribution in the southern Sierra Nevada

is primarily influenced by an orographic-lift effect on precip-

itation. Snow-depth residuals calculated by de-trending the

elevation dependency are correlated with slope, aspect and

penetration fraction; the regression coefficients of these vari-

ables in the multivariate linear-regression model show that

they are statistically significant in explaining the snow-depth

variability, all with p values smaller than 0.01. Over the ele-

vation range of 1500–3300 m, snow depth decreases 1 cm per

1◦ slope and decreases 0.5 cm per 1◦ aspect in going from

north to south. In open areas, snow depth increases 2 cm per

10 % increase in penetration fraction, while under canopy the

snow depth increases 10 cm per 10 % penetration-fraction in-

crease. Although the latter three variables were observed to
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be less important than elevation, the relative importance of all

four variables varies with local elevation range and canopy.

The snow-depth difference between open and canopy-

covered areas increased in the rain–snow transition elevation

range and then stabilized around 25–45 cm at high elevation.

Fluctuations in certain elevation ranges are attributed partly

to interactions from other topographic variables. Evidence of

this is found by filtering northness into a narrow band, which

results in these fluctuations flattening out.
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