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Abstract. Snow is an important and complicated element in
hydrological modelling. The traditional catchment hydrolog-
ical model with its many free calibration parameters, also
in snow sub-models, is not a well-suited tool for predicting
conditions for which it has not been calibrated. Such con-
ditions include prediction in ungauged basins and assessing
hydrological effects of climate change. In this study, a new
model for the spatial distribution of snow water equivalent
(SWE), parameterized solely from observed spatial variabil-
ity of precipitation, is compared with the current snow distri-
bution model used in the operational flood forecasting mod-
els in Norway. The former model uses a dynamic gamma dis-
tribution and is called Snow Distribution_Gamma, (SD_G),
whereas the latter model has a fixed, calibrated coefficient of
variation, which parameterizes a log-normal model for snow
distribution and is called Snow Distribution_Log-Normal
(SD_LN). The two models are implemented in the param-
eter parsimonious rainfall–runoff model Distance Distribu-
tion Dynamics (DDD), and their capability for predicting
runoff, SWE and snow-covered area (SCA) is tested and
compared for 71 Norwegian catchments. The calibration pe-
riod is 1985–2000 and validation period is 2000–2014. Re-
sults show that SD_G better simulates SCA when compared
with MODIS satellite-derived snow cover. In addition, SWE
is simulated more realistically in that seasonal snow is melted
out and the building up of “snow towers” and giving spuri-
ous positive trends in SWE, typical for SD_LN, is prevented.
The precision of runoff simulations using SD_G is slightly
inferior, with a reduction in Nash–Sutcliffe and Kling–Gupta
efficiency criterion of 0.01, but it is shown that the high preci-

sion in runoff prediction using SD_LN is accompanied with
erroneous simulations of SWE.

1 Introduction

Snow is an important hydrological parameter in the North-
ern Hemisphere and in Norway approximately 30 % of the
annual precipitation falls as snow. Snow and snow-related
hydrology have a significant impact on nature and society
in such regions. Seasonal snow ensures variation in outdoor
activities and considerable investments in infrastructure for
tourism and hydropower are dependent on stable seasonal
snow. Apart from snow-related hazards such as spring melt
floods and avalanches, snow may negatively affect construc-
tion safety and traffic flow at airports, roads and in urban ar-
eas. Information about snow conditions at the local, regional
and national scale is therefore important for the early warn-
ing of hazards, as well as for tourism, hydropower production
planning and water resources management.

Operational snow models have evolved differently for
hydrology than for meteorology and avalanche warning.
Whereas the model development in the latter two scien-
tific disciplines usually include detailed, multi-layered, phys-
ically based process representations, snow models in hydrol-
ogy are typically calibrated empirical relationships between
snow variables and the modest model forcing at hand, i.e.
snow accumulation and melt vs. precipitation and temper-
ature. One reason for such a discrepancy in modelling ap-
proaches is that calibrated hydrological snow models have
proved themselves at low temporal resolutions (i.e. 24 h res-
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olution; Anderson, 1976) and for stationary climatic condi-
tions. Another reason is that hydrological snow models are
expected to provide simulations at the catchment scale, for
which there are usually no estimates of more nonstandard
hydrological model forcing such as, for example, wind and
radiation. In addition, the governing equations for the physics
of hydrology at the small scale have proven difficult to scale
up in time and space to be relevant for catchment hydrology
(Kirchner, 2006).

For predictions in ungauged basins and in a changed cli-
mate, however, calibrated empirical relations in snow mod-
els cannot be expected to give reliable and useful results.
Skaugen et al. (2015) used the Distance Distribution Dynam-
ics (DDD) model (Skaugen and Onof, 2014) for prediction
in ungauged basins with model parameters estimated from
catchments characteristics. When analysing the deviations in
performance between the calibrated and the regionalized ver-
sions of the DDD model, the regionalized degree-day fac-
tor for snowmelt and the coefficient of variation (CV) for
the spatial probability density function (PDF) of snow water
equivalent (SWE) emerged as the parameters most responsi-
ble for poor regionalized results for runoff.

A realistically modelled spatial PDF of SWE is impor-
tant for the temporal evolution of SWE, snowmelt and snow-
covered area (SCA) (Buttle and McDonnel, 1987; Liston,
1999; Luce et al., 1999; Essery and Pomeroy, 2004; Luce
and Tarboton, 2004). In the literature, many models for
the PDF are proposed, especially for the period of time of
maximum accumulation, such as the log-normal distribu-
tion (Donald et al., 1995, Sælthun, 1996), the gamma dis-
tribution (Kutchment and Gelfan, 1996; Skaugen, 2007; Kol-
berg and Gottschalk, 2010; Skaugen and Randen, 2013) and
the normal distribution (Marchand and Killingtveit, 2004,
2005). Helbig et al. (2015) investigated the spatial PDF of
snow depth for three large alpine areas and found that the
gamma and the normal distributions were better suited than
the log-normal distribution. In Alfnes et al. (2004), Skau-
gen (2007) and Skaugen and Randen (2013), it was demon-
strated through the repeated measurements of the same snow
course during the accumulation and melting seasons that the
spatial PDF of SWE changed its shape continuously during
the periods of accumulation and melting. During the accu-
mulation period, the spatial distribution of SWE would be-
come less positively skewed as accumulation progressed and
increasingly more positively skewed as melting progressed.
Good simulation of the evolution of SCA is especially im-
portant since it controls the runoff dynamics of the spring
melt flood and is the basis for properly accounting the energy
fluxes in land-surface schemes in atmospheric models (Lis-
ton, 1999; Essery and Pomeroy, 2004; Helbig et al., 2015).

In this study we will test an alternative method for param-
eterizing the spatial PDF of SWE. In the alternative method
the spatial PDF of SWE is modelled as a dynamic gamma
distribution and is hereafter denoted SD_G (Snow Distribu-
tion_Gamma). The parameters of SD_G are estimated solely

from observed spatial variability of precipitation; i.e. all
its parameters are estimated prior to the calibration of the
hydrological model against runoff. Information on the spa-
tial variability of precipitation is available at many sites,
which makes it possible to use the method for prediction
in ungauged basins. Downscaled climate changes projections
may also provide such information so that effects of climate
change on snow conditions and hydrology may be assessed.
In using such a method, the current dependency of calibra-
tion in hydrological snow models is reduced.

SD_G is described in Skaugen (2007) and has since been
developed in Skaugen and Randen (2013). The method was
tested at small test sites and found to model the spatial mo-
ments of SWE and SCA well (Skaugen and Randen, 2013)
but has, however, not been implemented in a hydrological
model and hence not been tested for larger scales and as a
tool in operational hydrology. In this study, the SD_G is im-
plemented in the DDD model and its performance is com-
pared with the currently used snow distribution model, the
Snow Distribution_Log-Normal (SD_LN) (Killingtveit and
Sælthun, 1995; Sælthun, 1996). SD_LN distributes SWE log
normally in space with a fixed, calibrated CV. It has been
used operationally in Norwegian hydrology for many years,
although it has the feature of being a calibrated model and
hence not suitable for climate change studies and for predic-
tions in ungauged basins. In addition, a fixed CV, and hence
an assumption of perfect spatial correlation, is not supported
by observations (Alfnes et al., 2004), and in a recent paper
Frey and Holzmann (2015) show that a log-normal spatial
distribution of SWE with a fixed CV of introduces so-called
“snow towers”. For high-elevation areas, and for the highest
quantiles of the distribution, snow survived the summer and
accumulated to give an overall positive trend in SWE, which
was not observed.

The main objective of this paper is to evaluate if SD_G is
a suitable alternative for use in rainfall–runoff models. We
will compare simulated results of runoff, SWE, SCA and
snow cover duration simulated with DDD using the current
model, SD_LN, and with the alternative, SD_G, for 71 catch-
ments in Norway. Time series of satellite-derived SCA from
MODIS (Moderate Resolution Imaging Spectroradiometer)
images are available for the catchments, so simulated runoff
and SCA will also be compared against observed values.

2 Method

The proposed method requires an estimate of the spatial PDF
of SWE at all times during the snow season. As in Skau-
gen (2007) and Skaugen and Randen (2013) we model the
spatial PDF of Z′ (the accumulated positive SWE, not in-
cluding zeros) as a two-parameter gamma distribution. We
hence need the estimates of the mean, E(Z′), and variance,
Var(Z′), in order to estimate the shape, ν, and scale, α, pa-
rameters of the gamma distribution. The following subsec-
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tion describes how E(Z′) and Var(Z′) are estimated for ac-
cumulation and melting events. Accumulation and melting
events may change the spatial extent of SCA, which will re-
quire special consideration when estimating the E(Z′) and
Var(Z′). In this study SCA is set equal to 1 (full coverage)
for every snowfall event, whereas a melting event implies a
reduction in coverage. With estimates of E(Z′) and Var(Z′),
the parameters of the gamma distributions are calculated as

ν =
E(Z′)2

Var(Z′)
(1a)

and α =
E(Z′)

Var(Z′)
. (1b)

In the first subsection, the model for estimating the statis-
tical moments, E(Z′) and Var(Z′), for the accumulated sum
of SWE, Z′, is presented. As in Skaugen and Randen (2013),
the moments are derived from the sum of correlated gamma
distributed unit fields, y(x) [mm], where x represents space.
For the remainder of the paper the unit field, y (x), is denoted
y.

Section 2.1.1–2 briefly address the estimation of E(Z′)
and Var(Z′) for accumulation and melting events with a
changing SCA. The derivation for accumulation events dif-
fers from that presented in Skaugen and Randen (2013) and
is presented in detail. For melting events, however, only the
resulting equations are presented since the full derivations
can be found in Skaugen and Randen (2013).

Section 2.2 describes how change in SCA is estimated af-
ter a melting event and Sect. 2.3 describes briefly the hydro-
logical model and its current model for the spatial distribu-
tion of SWE, SD_LN.

The final subsection, Sect. 2.5, describes the procedure for
testing and comparing the new model for the spatial distri-
bution of SWE, SD_G against the current, SD_LN. The data
used will also be presented here.

2.1 Statistical moments of spatial SWE

The PDF of Z′ does not contain zeros and is hence condi-
tional on snow. For the non-conditional distribution of SWE,
which also includes zeros, the variable SWE is denoted Z.
The unit fields of snowfall are distributed in space according
to a two-parameter gamma distribution, y =G(ν0α0), with
PDF:

f (y)=
1

0(ν0)
α
ν0
0 y

ν0−1e−α0yα0ν0y > 0, (2)

where 0 is the gamma function and α0 and ν0 are shape
and scale parameters respectively. The mean of the unit
equals E(y)= ν0/α0 and the variance equals Var(y)=
ν0/α

2
0 . When estimating the moments for the sum of n units,

Z′(n)=
n∑
i=1
yi , we have to take into account that the unit

fields are correlated. This has no bearing on the mean,E(Z′),
but affects the variance, Var(Z′), i.e.

E
(
Z′
)
= n

ν0

α0
=
ν

α
, (3)

Var
(
Z′
)
= n

ν0

α2
0
+ 2

∑
i<j

Cov(yi,yj )

= n
ν0

α2
0

[1+ (n− 1)c (n)]=
ν

α2 , (4)

where the function c(n) is the average correlation over n
units.

From Eq. (4) we see that if we have perfect and con-
stant correlation between the y’s, c(n)= 1, the variance of
Z′ equals Var(Z′) = n2 ν0

α2
0

. From Eqs. (3) and (4)we see that

the relationship between the standard deviation, σZ′ , and the
mean, E(Z′), is a straight line with slope equal to ν−0.5

0 ,
σZ′ = ν

−0.5
0 E

(
Z′
)
. However, if we have no correlation be-

tween the y’s, c(n)= 0, the variance equals Var(Z′) = n ν0
α2

0
,

which gives a relationship between σZ′ and E(Z′) as a
curved line that departs from that of perfect correlation by
n−0.5, σZ′ = (ν0n)

−0.5E(Z′). The variance, however, is lin-
early related to the mean. Correlation between the units, c(n),
gives a relationship between the mean and the standard de-
viation that is something between the two cases described
above. A typical analytical approximation to the spatial and
temporal correlation function for precipitation is an exponen-
tially decaying function with either time or space as argu-
ment. Zawadski (1973, 1987) found exponential decorrela-
tion for rainfall for both time and space. As n (number of
summations) may be considered a variable akin to time, c(n)
is approximated by an exponential correlation function:

c(n)= exp(−
n

D
), (5)

where D is the decorrelation range in which the correlation
equals 1/e (Zawadski, 1973).

The variance of Z can now, with Eqs. (4) and (5), be ex-
pressed as

Var
(
Z′
)
= E(Z′)

1
α0
[1+ (n− 1) exp (−n/D)]. (6)

From measured, positive (i.e. not including zeros) precipita-
tion over an area we can observe the relationship between the
spatial mean and spatial variance of precipitation. Further-
more, we can estimate the two unknowns, D and α0, from
such data by nonlinear regression. Figure 1a shows a scat-
ter plot of spatial mean and standard deviation of positive
precipitation (from the Norwegian Meteorological Institute)
with a fitted function of the type Eq. (6). From Fig. 1b, where
the spatial mean and standard deviation are plotted in log–log
space, we see that the relationship is not that of a power law,
as suggested in Skaugen and Randen (2013) and Skaugen
and Andersen (2010), since a straight line will not represent
the point cloud very well.
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Figure 1. Scatter plot of the spatial mean and spatial standard deviation of observed precipitation over a catchment. Equation (6) is fitted to
the data by nonlinear regression (red line). Bottom panel shows the scatter plot in log–log.

The parameters a0, ν0 and D are estimated from an analy-
sis of the variability of precipitation as shown in Fig. 1 for the
catchment of interest. A mean of the units has been chosen
as E(y)= ν0

α0
= 0.1 mm, since 0.1 mm is the smallest pre-

cipitation value measured by the Norwegian Meteorological
Institute.

2.1.1 Statistical moments of spatial SWE after an
accumulation event

From a single snowfall event of n units on a snow-free sur-
face, the mean and the variance of the snow reservoir Z are
estimated according to Eqs. (3) and (4). If there is an addi-
tional snowfall event of u units, the mean of the resulting
snow reservoir is

E
(
Zn+u

′
)
= (n+ u)

a0

ν0
, (7)

and the variance is

Var
(
Zn+u

′
)
=
ν

α2 + u
ν0

α2
0
[1+ (u− 1)c (u)], (8)

where ν

α2 is the conditional variance prior to the accumula-
tion event. In order to keep the notation simple we say that n
is the number of units at t−1 and u is the number of units of
the event at time t .

Equations (7) and (8) are valid if SCA= 1 for both events.
If SCA prior to the new event was reduced due to melting
(SCAt−1 < 1), we have to scale the contributions of n and u
according to the change in SCA from SCAt−1 < 1 to SCAt =
1; hence the mean is

E
(
Zn+u

′
)
=
a0

ν0
(SCAt−1 (n+ u)+SCAtu), (9)

and the variance is

Var
(
Zn+u

′
)
= SCA2

t−1(
ν

α2 + u
ν0

α2
0
([1+ (u− 1)c (u)]))

+SCA2
t

ν0

α2
0
u([1+ (u− 1)c (u)]) . (10)
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2.1.2 Statistical moments of spatial SWE after a
melting event

Let the snow reservoir, consisting of n units, be reduced by u
units after a melting event. The snow coverage before and
after the melting event is SCAt−1 and SCAt respectively,
where SCAt < SCAt−1. We set SCAt−1 as 1, so that SCAt
is the relative reduction in snow coverage due to melting,
and not the catchment value. Reduction in snow coverage
needs special attention regarding the conditional (Z′) and the
non-conditional (Z)moments since we have to determine the
spatial moments for the area of the new coverage, SCAt (not
including zeros, i.e. conditional moments) and for the area
which includes the previously covered part, SCAt−1 (includ-
ing zeros, i.e. non-conditional moments).

The non-conditional mean after the melting event is esti-
mated as

E(Zn−u)= (n− u)
ν0

α0
, (11)

and the conditional mean is

E
(
Zn−u

′
)
=
E(Zn−u)

SCAt
=

1
SCAt

(n− u)
ν0

α0
. (12)

We note that the difference in conditional means before
and after the melting event is

E(Z′n)−E(Z
′
n−u)=

ν0

α0

(
n− (n− u)

1
SCAt

)
=
ν0

α0

(
u′
)
, (13)

where u′ is the conditional number of melted units and de-
scribes the difference in units when the (relative) reduction
in SCA is taken into account.

Skaugen and Randen (2013) give a detailed derivation of
the conditional spatial variance of SWE after a melting event.
Here, only the final expression is reported:

Var
(
Zn−u

′
)
=

ν

α2 − 2u′n
ν0

α2
0
cmlt

(
u′
)
+ u′

ν0

α2
0

+ u′(u′− 1)
ν0

α2
0
c(u′), (14)

where ν

α2 is the variance of Z′ prior to the melting event, and
cmlt

(
u′
)

is the (negative) correlation between melt and SWE
and is estimated as a linearly decreasing function of u and
equal to

cmlt
(
u′
)
=
u′

n

(
1

2n

(
ν

α2

α2
0

nν0
+ 1+ (n− 1)c (n)

))
. (15)

It is clear from Eq. (13) that estimation of the change in
SCA due to melting is needed in order to assess u and con-
sequently Var

(
Zn−u

′
)

in Eq. (14). The next subsection de-
scribes such a procedure.

Figure 2. Schematic of how changes in SCA are estimated. (a) fm
and fa are the spatial frequency distributions (PDF) of snowmelt
and accumulation respectively. m, 1−m, a and 1− a are partially
integrated values of the PDFs. (b) The integral of the PDFs for suc-
cessive intervals of SWE and melt and their spatial coverage. The
cross-hatched bars constitute the reduction in SCA.

2.2 Estimating changes in snow-covered area

After a snowfall event, the SCA for the area of interest (a
catchment or a part of a catchment in the case of eleva-
tion bands) is set equal to 1. For a melting event, however,
the estimate of changes in SCA is more complex. The pre-
vious subsection suggests modelling the accumulated SWE
as a gamma distribution, fa, with parameters ν and α de-
rived from the estimated mean and variance of accumulated
SWE as described above. In Skaugen and Randen (2013),
the spatial frequency of snowmelt, fm, was also modelled
as a gamma distribution following the same principles as for
accumulation, i.e. that the moments can be estimated using
Eqs. (3) and (4) with u replacing n. At all times u′ ≤ n, which
implies that until the final melting event occurs, fm is more
skewed to the left than fa.

Figure 2 illustrates how the reduction in SCA due to a
melting event is estimated. Since the energy requirements for
transforming a snowpack into snowmelt is linearly related to
snow depth (Dingman, 2002), it is reasonable to assume that
areas with smallest SWE are the first to become snow free.
Figure 2a shows the PDFs of melt (fm, red) and accumula-
tion (fa, blue). In Fig. 2b we have plotted the integral of the
PDFs for successive intervals of SWE, so each horizontal bar
represents a fractional area (see the x axis) of SWE or melt
values. The horizontal bars for each integrated PDF sum up
to unity, i.e. the entire area covered by snow. The figure il-
lustrates that melt values less than X cover a large area (the
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integral of fm up to X, called m,
∫ X

0 fm =m in the Fig. 2a
and much larger than the area of SWE values less thanX (the
integral of fa up toX, called a, is

∫ X
0 fa = a in Fig. 2a). Con-

sequently, the fractional area of SWE values less than X, a,
becomes snow free after the melting event. In addition, there
are melt values higher than X that reduce the coverage of
corresponding SWE values. The sum of these bars adds up
to 1−m and equals the integral

∫
∞

X
fm = 1−m. In total, the

reduction of SCA after a melting event is

SCAred = a+ 1−m (16)

and is seen in Fig. 2b as the sum of the cross-hatched bars.
Recall that the reduction in SCA is relative; i.e. it is the re-
duction from the previous snow cover, which is also the prob-
ability space of both fa and fm and equal to 1.

The correlation of snowmelt c(u) as a function of intensity
(u) (see Eq. 14) has not yet been investigated in detail and is,
in this study, modelled as that of accumulation. Skaugen and
Randen (2013), however, reported empirical evidence sup-
porting such an assumption. The observed features of fm are
found to be similar to those of fa, i.e. that the spatial distribu-
tion is generally skewed to the left and becomes less skewed
as the intensity of melt increases. These features for fm are
confirmed by additional measurements of spatial snowmelt
by Weltzien (2015).

2.3 The hydrological model

The DDD model (Skaugen and Onof, 2014; Skaugen et
al., 2015; Skaugen and Mengistu, 2015) is a rainfall–
runoff model written in the programming language R (www.
r-project.org) and runs operationally at daily and 3-hourly
time steps at the Norwegian flood forecasting service at the
Norwegian Water Resources and Energy Directorate (NVE).
The DDD model introduces new concepts in its description
of the subsurface and of runoff dynamics and is developed
with the objective of having as many as possible of its model
parameters estimated directly from observed data such as
maps and runoff characteristics and not through calibration
against runoff. In its current version, the parameters of the
modules for subsurface and runoff dynamics are all estimated
prior to calibration against runoff. Input to the DDD model is
precipitation and temperature. The model is semi-distributed
in that the moisture-accounting (rainfall and the accumulat-
ing and melting of snow) is performed for 10 elevation bands
of equal area. The catchment averages of precipitation and
temperature are distributed to the elevation bands using cali-
brated lapse rates. The catchment averaged precipitation can
be corrected by multiplying the amount with a constant in
order to get the long-term water balance right. Snowmelt is
estimated using a degree-day model (Ohmura, 2001; Hock,
2005), where the melted amount is a linear function of the
difference between actual air temperature and a calibrated
threshold temperature for melting. In the current routine in
DDD for the spatial PDF of SWE (SD_LN), the PDF is mod-

elled as the sum of uniform and log-normally distributed
snowfall events (Killingtveit and Sælthun, 1995; Sælthun,
1996). The distribution is constant for up to a specified
threshold of accumulated SWE (i.e. 20 mm). Each additional
snowfall event is log-normally distributed through a cali-
brated coefficient of variation, θCV, and SWE is estimated for
nine quantiles and added to previous quantile values. In this
way, each additional snowfall event has a spatial distribution
of a fixed shape (through the calibrated θCV) regardless of its
intensity. Moreover, the method implies perfect spatial corre-
lation in that a new snowfall is distributed such that the quan-
tiles with highest SWE always receives most SWE so that the
CV of the sum of snowfall events remains a constant. A sim-
ple example demonstrates this: if the accumulation of SWE,
Z, is the sum of two snowfall events y, Z = y1+ y2, where
y ∼ LN(µy, σ 2

y ) is log-normally distributed with mean µy
and variance σ 2

y , then the mean of Z is E(Z)= 2µy and
the variance is Var(Z)= σ 2

y +σ
2
y +2COV(y1,y2). With per-

fect correlation the variance equals Var(Z)= σ 2
y +σ

2
y +2σ 2

y

(Haan, 1977, p. 56) and it is easily seen that the CV for Z
equals that of y, i.e.

CVZ =
σZ

µZ
=

2σy
2µy
= CVy . (17)

The spatial distribution of melt is constant and reduction in
SCA occurs when the SWE associated with a quantile be-
comes 0. The fraction of snow-free areas is thus the sum of
quantiles with zero SWE.

The model parameters relevant for snow accumulation and
melt which are estimated by calibration against runoff in-
clude θCV, describing the spatial distribution of SWE, θCX,
which is the degree-day factor, and θWs, which is the max-
imum liquid water content in the snowpack (see Table 1 of
model parameters).

Further details on the DDD model are found in Skau-
gen and Onof (2014) and in Skaugen and Mengistu (2015).
Model parameters that can be calibrated against runoff are
denoted by θ with subscripts (e.g. θCV) in order to clearly dis-
tinguish between estimated and calibrated parameters. From
Table 1 we see that 11 model parameters have the potential to
be calibrated. The next subsection shows, however, that the
number of calibrated parameters for this study is reduced to
five (shown in bold in Table 1).

2.4 Test of SD_G in DDD

We will evaluate the performance of SD_G, parameterized
from observed spatial variability of precipitation, by imple-
menting it in DDD (DDD_G) and compare performance with
DDD_LN, in which SD_LN, with its calibration parameter
θCV, is implemented. The parameters D and α0 for SD_G
are estimated for each catchment by analysing the spatial
mean and spatial standard deviation of positive precipitation
(excluding zero values). The precipitation data, provided by
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Table 1. Parameters of the DDD model with description and method of estimation. Some parameters (denoted with a ∗) have values obtained
through experience in calibrating DDD for gauged catchments in Norway. These values are within the recommended range for the HBV
model (Sælthun, 1996). Other parameter values are assigned standard values as suggested in the literature. The GIS analyses are carried out
using the national 25× 25 m digital elevation model (http://www.statkart.no). Parameters in bold have been calibrated in this study, by either
dataset V1 or V2.

Parameter Description

Hypsographic curve 11 values describing the quantiles 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Derived from GIS.
θWs [%] Maximum liquid water content in snow. Calibrated (V1).
Hfelt Mean elevation of catchment. Derived from GIS.
θTlr [◦C/100 m] Temperature lapse rate (pr 100 m). Not used in this study.
θPlr [mm/100 m] Precipitation lapse rate (pr 100 m). Not used in this study.
θPc Correction factor for precipitation. Fixed at value 1.0 (see text).
θSc Correction factor for precipitation as snow. Fixed at value 1.0 (see text).
θTX [◦C] Threshold temperature rain/snow. Fixed at value 0.5 (see text).
θTS [◦C] Threshold temperature melting/freezing. Fixed at value 0.0 (see text).
θCX [mm ◦C−1 day−1] Degree-day factor for melting snow. Calibrated (V2).
∗ CGlac [mm ◦C−1 day−1] Degree-day factor for glacial melt. Fixed at value 1.5× θCX.
∗ CFR [mm ◦C−1 day−1] Degree-day factor for refreezing. Fixed at value 0.02.
Area [m2] Catchment area. Derived from GIS.
maxLbog [m] Maximum of distance distribution for bogs. Derived from GIS.
midLbog [m] Mean of distance distribution for bogs. Derived from GIS.
Bogfrac Fraction of bogs in catchment. Derived from GIS.
Zsoil Areal fraction of zero distance to the river network for soils. Derived from GIS.
Zbog Areal fraction of zero distance to the river network for bogs. Derived from GIS.
NOL Number of storage levels. Fixed at value 5 (Skaugen and Onof, 2014).
θcea [mm ◦C−1 day−1] Degree-day factor for evapotranspiration. Calibrated (V1).
R Parameter defining field capacity (Skaugen and Onof, 2014).
δ Shape parameter of gamma distributed recession characteristic. Estimated from recession.
β Scale parameter of gamma distributed recession characteristic. Estimated from recession.
θCV Coefficient of variation for spatial distribution of snow. Calibrated (V2).
α0 Scale parameter of unit precipitation. Estimated from observed spatial variability of precipitation.
D Decorrelation length of spatial precipitation. Estimated from observed spatial variability of precipitation.
θmathbf vr [m s−1] Mean celerity in river. Calibrated from (V1).
mRd [m] Mean of distance distribution of the river network. Derived from GIS.
sRd [m] Standard deviation of distance distribution of the river network. Derived from GIS.
Rdmax [m] Maximum of distance distribution in river network. Derived from GIS.
mS [mm] Mean of subsurface water reservoir. Estimated from recession.
d [m] Mean of distance distribution for hillslope. Derived from GIS.
dmax [m] Maximum of distance distribution for hillslope. Derived from GIS.
Glacfrac Fraction of bogs in catchment. Derived from GIS.
mGl [m] Mean of distance distribution for glaciers. Derived from GIS.
sGl [m] Standard deviation of distance distribution for glaciers. Derived from GIS.
Areal fraction of glaciers in
10 elevation zones

Derived from GIS.

the Norwegian Meteorological Institute, are daily precipita-
tion values from precipitation gauges (a minimum of two sta-
tions) located close to the catchment in question and are from
the period 1990–2011.

DDD_G and DDD_LN are run for 71 catchments dis-
tributed across Norway (see Fig. 3). The catchments vary in
latitude, size, elevation and surface cover (see histograms of
selected catchment characteristics (CC) in Fig. 4) and consti-
tute thus a varied, representative sample of Norwegian catch-
ments. The runoff data are provided by NVE and we use the
period of 1 September 1985 to 31 August 2000 for calibra-

tion of DDD_G and DDD_LN and the period of 1 Septem-
ber 2000 to 31 December 2014 for validation.

The following procedure was conducted: the models were
initially calibrated using long time series of precipitation and
temperature to simulate runoff using a Monte Carlo Markov
chain method (Soetart and Petzhold, 2010) written in R. The
time series for precipitation and temperature are mean areal
catchment values extracted from the current, operational me-
teorological grid (1× 1 km2) which provides daily values of
precipitation and temperature for Norway from 1957 to the
present day (see www.senorge.no). This meteorological grid
is denoted V1. Recently, a new, improved meteorological
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Figure 3. Location of the 71 catchments used to evaluate the new
subsurface routine. The results presented in the next section are or-
ganized with respect to the regions south-east (S-E), south-west (S-
W), mid-Norway (M-N) and Northern Norway (N-N).

grid was developed, denoted V2 (Lussana et al. 2014a, b),
which reduced much of the positive bias in precipitation
characteristic of V1 (see Saloranta, 2012). The new meteo-
rological grid (V2) in DDD gives reasonable simulated val-
ues of runoff without the need for a calibrated correction of
the amount of precipitation (θPc; see Table 1 for parameters
of the DDD model). Areal averages of precipitation and tem-
perature values are extracted for 10 elevation zones, which
makes it possible to eliminate calibrated precipitation and
temperature gradients (θPlr and θTlr). Three parameters asso-
ciated with snow accumulation and melt – the correction fac-
tor for solid precipitation (θSc = 1.0), the threshold tempera-
ture for snowmelt (θTs = 0 ◦C) and the threshold temperature
for solid and liquid precipitation (θTX = 0.5 ◦C) – were fixed,
thereby reducing the number of calibration parameters from
11 to 5. For the remaining five parameters, the calibrated val-
ues (from using V1 as input) are retained for three parameters
(θWs, θvr and θcea), whereas for the DDD_LN model, θCX and
the parameter of interest for this study, θCV, are recalibrated
using V2 as input data. In using such a procedure we assume
that the three parameters which are calibrated using the V1
data (and, most likely, not optimal using the V2 data as input)
will not favour either of the two compared model structures
(DDD_LN and DDD_G). When recalibrating the θCV with
V2 data, we attempt to make it as difficult as possible to ac-
cept the new spatial frequency distribution of SWE (SD_G).
If we calibrated all three parameters (θWs,θvr and θcea) using

V2, we could risk that errors associated with the structures
of SD_G and SD_LN were compensated by the other three
parameters, such that we could not isolate and evaluate the
effect of implementing SD_G. In addition, for the DDD_G
model, the degree-day factor θCX was calibrated since corre-
lation between this parameter and θCV was revealed. It would
hence be probable that a θCX optimized using SD_LN with
V1 would not be optimal for testing SD_G.

From almost 1500 optical satellite scenes from MODIS
during the period 2001–2015, SCA for each elevation band
have been estimated for 69 of the 71 catchments (for two of
the catchments SCA observations were not retrieved). Many
scenes are discarded due to insufficient light caused by the
low solar angle during the Norwegian winter, but for each
catchment, about 150 estimates of SCA during the 15 years
can be used for validation of the snow distribution models’
ability to simulate a realistic evolution of snow-free areas
during the snowmelt period. For each MODIS satellite scene,
each pixel (500× 500 m) is assigned a SCA value between 0
and 100 % coverage using a method based on the Norwegian
linear reflectance to snow cover (NLR) algorithm (Solberg
et al., 2006). The input to the NLR algorithm is the normal-
ized difference snow index (NDSI) signal (Salomonsen and
Apple, 2004).

3 Results

With the procedures and data described in the previous sec-
tion, we can compare the performances of the DDD model
with calibrated PDF of SWE (DDD_LN) and the DDD
model with estimated PDF of SWE (DDD_G) with respect
to runoff, SWE, SCA and duration of the snow cover for the
validation period (1 September 2000–31 December 2014).
In Table 3 we present the significant Spearman correlations
(with p value < 0.01) between simulation results for these
variables and catchment characteristics such as catchment
size, areal percentages of lakes, bogs, bare rock and forest
and mean elevation of catchment in order to investigate if the
results are stratified with respect to the physiography of the
catchments.

3.1 Runoff

Figure 5 shows different skill scores obtained for runoff sim-
ulations for the 71 catchments with DDD_LN (red crosses)
and DDD_G (blue circles). The figure is organized such that
the catchments are sorted geographically starting from the
south-east (S-E), then follows the south-west (S-W) to mid-
Norway (M-N) and finally Northern Norway (N-N). Fig-
ure 5a shows the Nash–Sutcliffe efficiency criterion (NSE;
Nash and Sutcliffe, 1970) and Fig. 5b the Kling–Gupta effi-
ciency criterion (KGE; Gupta et al., 2009; Kling et al., 2012)
and Fig. 5c–e the three components of the KGE, correlation,
bias and variability error respectively. The variability error is
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Figure 4. Histograms of catchment characteristics for the 71 catchments: (a) mean of the hillslope distance distribution, d; (b) areal percent-
age of lakes; (c) areal percentage of bogs; (d) catchment area; (e) mean elevation; (f) areal percentage of glaciers; (g) areal percentage of
forests; and (h) areal percentage of bare rock.

given by the ratio of the coefficients of variation of simulated
and observed runoff as suggested in Kling et al. (2012). The
mean values of the skill scores for DDD_LN and DDD_G are
shown in Table 2 and as straight lines in the plots. We have
also added a moving average of the results for enhanced read-
ability. We see from the Fig. 5 and Table 2 that little precision
in predicting runoff is lost when using DDD_G. The mean
values for NSE, KGE and the different elements of KGE
are practically identical. Differences between runoff simu-
lations for DDD_G and DDD_LN are mostly pronounced in
the south-east, where, especially for NSE, DDD_LN appears
to be consistently better.

Table 3 shows that significant correlation between NSE
and CC was only found for catchment area. Such a correla-
tion was not found for KGE; rather, significant negative cor-
relation were found for both models between KGE and the
areal fraction of bare rock.

Table 2. Mean values of skill scores for the validation period 2000–
2014 simulated with DDD_G and DDD_LN for 71 catchments.
KGE_r measures correlation, KGE_b, the bias error and KGE_g
the variability error. All skill scores have an ideal value of 1.

NSE KGE KGE_r KGE_b KGE_g

DDD_G 0.64 0.70 0.85 0.85 1.02
DDD_LN 0.65 0.71 0.85 0.84 0.99

3.2 Snow water equivalent

Figure 6 shows an example of a time series of simulated SWE
using DDD_G (blue) and DDD_LN (red). This example il-
lustrates that SWE simulated with DDD_LN tends to survive
the summers at the highest elevations, which results in a pos-
itive trend for SWE. Seasonal SWE simulated by DDD_G
and DDD_ LN is similar at the start of the time series but
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Figure 5. Skill scores for DDD_G (blue circles) and DDD_LN (red crosses) for 71 Norwegian catchments. Mean skill score values are
shown in horizontal lines along with moving averages (same colour code). (a) NSE, (b) KGE, (c) KGE_r (correlation), (d) KGE_b (bias)
and (e) KGE_g (variability error). The results are organized into the regions south-east (S-E), south-west (S-W), mid-Norway (M-N) and
Northern Norway (N-N) as indicated in Fig. 3.

Table 3. Spearman correlations between simulated model results and catchment characteristics for the validation period 2000–2014. Only
significant correlations are shown (p value < 0.01) except for the correlation marked ∗, which has a p value slightly larger than 0.01
(p value= 0.013).

Catchment size Lake (%) Bog (%) Bare rock (%) Forest (%) Mean
elevation

NSE DDD_G 0.38
DDD_LN 0.38

KGE DDD_G −0.33
DDD_LN −0.35

Slope SWE DDD_G 0.38 −0.46 0.44 −0.40
SCA_RMSE DDD_G −0.3∗

DDD_LN −0.34
SCA_MAE DDD_G 0.50 −0.40

DDD_LN 0.44 −0.42
Duration of snow cover DDD_G 0.32 0.67 −0.63 0.73

DDD_LN 0.42 0.41 −0.41 0.55
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Figure 6. Time series of simulated SWE using DDD_G (blue line)
and DDD_LN (red line) for catchment Tansvatn in Southern Nor-
way.

deviates increasingly as time proceeds. Figure 7a shows a
scatter plot of the mean simulated SWE (averaged over the
time series) for the 71 catchments by the two models and it
is clearly seen that SWE simulated by DDD_LN is higher
than simulated by DDD_G although both the precipitation
and temperature input are identical for the two models. From
linear regression between SWE, precipitation and tempera-
ture with time we can estimate simple annual trends. Fig-
ure 7b, c, d show plots of the slopes of the regression lines.
Whereas both precipitation and temperature show very mod-
est annual rates of change, both models simulate increasing
SWE with time, but DDD_LN, on average, 5 times as much
as DDD_G. If 100 days a year may serve as an estimate of
days with solid precipitation, the increase in SWE due to the
positive trend in precipitation comes very close to the trend in
SWE found for DDD_G. Positive trends of SWE greater than
5 mm year−1 was found for 26 out of 71 (37 %) catchments
for DDD_LN model and 7 out of 71 catchments (10 %) for
the DDD_G model.

The regression slopes of SWE for both models were cor-
related with CC and for DDD_LN no significant correlations
were found. Significant correlation was, however, found be-
tween the slopes of SWE for DDD_LN and the parameter
values of θCV, rS_SWE, θCV = 0.45, which in turn is signifi-
cantly correlated with skill score KGE, rKGE_LN,θCV = 0.40.
For DDD_G significant correlations were found between the
slopes and lakes, bare rock, bogs and forest.

3.3 Snow-covered area and snow cover duration

Figure 8a shows the root mean square error (RMSE) between
observed and simulated catchment values of SCA for 69
catchments. Although the mean RMSE does not differ much
between the two models (mean(RMSE)= 0.14 for DDD_G
and mean(RMSE)= 0.15 for DDD_LN) we can note that
SCA is better estimated using DDD_G for 46 out of 69 catch-
ments (67 %). DDD_LN appears to be better in the south-
western part of Norway whereas DDD_G performs better
in the other regions. The mean elevation of catchments was
found to be significantly correlated to RMSE for simulated
SCA using DDD_LN and nearly significantly correlated us-
ing DDD_G. The correlation implies that the errors in esti-
mating SCA are, for both models, reduced as the mean ele-
vation of the catchments increase. Figure 8b shows the mean
absolute error (MAE) and we see that DDD_G is the supe-
rior method with respect to MAE for all regions except for
the south-west. The errors are mostly positive indicating a
general overestimation of SCA, although underestimation is
also found in south-western Norway. The mean value over
all the catchments is mean(MAE)= 0.03 for DDD_G and
mean(MAE)= 0.06 for DDD_LN. For both models, MAE
was significantly correlated to the areal percentage of lakes
and the size of the catchment, but not the mean elevation.

The mean annual snow cover duration was calculated as
the mean number of days with snow present in the catchment
and is shown in Fig. 9. There is a striking difference in this
results between DDD_LN and DDD_G. The mean duration
of the snow cover of DDD_LN shows almost no variability,
is very high and suggests an almost perennial snow cover.
This result is consistent with the positive trends for SWE as-
sociated with DDD_LN. From Table 3 we see that the snow
cover duration are, for both models, significantly correlated
with catchment size, fraction of forest and bare rock and the
mean elevation of the catchment.

4 Discussion

Table 2 and Fig. 5 show that, according to the NSE and
KGEs, the models are almost identical with respect to the
simulation of runoff. This implies that little performance
is lost in simulating runoff by introducing the new proce-
dure for modelling the spatial frequency distribution of SWE
although there are one parameter less to calibrate against
runoff. A reduction in the number of parameters to calibrate
reduces the dimensions of the parameter space and thus the
parameter uncertainty. In addition, it makes the model less
flexible and more dependent on its structure so that possible
structural deficiencies can be more easily identified (Kirch-
ner, 2006). These are very important points when the de-
mands on hydrological models move from just predicting
runoff to reliable predictions for more elements in the hydro-
logical cycle such as for example SWE and SCA. In addition,
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Figure 7. Scatter plots of mean SWE simulated with DDD_G and DDD_LN for 71 catchments (a), annual slope of SWE (b), annual slope
of precipitation (c) and temperature (d).

Figure 8. (a) Root mean square error (RMSE) for simulated SCA
for DDD_G (blue) and DDD_LN (red). (b) Mean absolute error
(MAE) for simulated SCA for DDD_G (blue) and DDD_LN (red).
Moving averages and mean values of RMSE and MAE are shown
with the same colour code.

to properly assess the hydrological effects of climate change
and to provide useful predictions for ungauged basins, we
have to move towards the use of hydrological models with a
minimum of calibration parameters.

The major objective of this study is to investigate whether
DDD_G gives a more realistic simulation of snow prop-
erties, such as a realistic temporal evolution of SWE and
SCA during the snow season. Figures 6 and 7 show that
DDD_LN gives a pronounced positive trend for simulated
SWE, whereas DDD_G gives a small positive trend in SWE
that corresponds roughly to that of precipitation (recall that
SWE is the accumulated solid precipitation during a period
of time). It is notable that such an obvious erroneous simula-
tion of SWE using SD_LN has so little impact on the preci-
sion of runoff predictions. A possible reason is that the sur-
plus of snow, located at the highest elevations and for small
areal fractions, will not have temperatures high enough,
even during summer, to generate intense snowmelt affecting
the precision of runoff simulations. In over-parameterized
rainfall–runoff models, the optimal runoff simulation is of-
ten a system of compensating errors in states (i.e. soil mois-
ture and SWE) and updating one of the states from observa-
tions may, in fact, deteriorate the simulation result because
the balance of errors is disturbed (Parajka et al., 2007). It is,
however, of concern that the method itself introduces trends
that could easily be interpreted as a trend in SWE in a cli-
matic study. This problem of “snow towers” in models using
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Figure 9. Mean annual days of snowcover in the catchments for
DDD_LN (red) and DDD_G (blue). Moving averages are shown
using the same colour code.

a log-normal distribution for SWE with a fixed, calibrated
CV has recently been addressed in the literature (Frey and
Holzmann, 2015). In Norway, using such a snow distribution
model with the well-known Swedish rainfall–runoff model,
HBV (Hydrologiska Byråns Vattenbalansmodell; Bergström,
1992), has led to the operational procedure of deleting the
remaining snow reservoir at the end of summer. Such a pro-
cedure clearly constitutes an example of a model working
well (with respect to runoff) but not for the right reasons.
This point is further illustrated when we focus on one of the
catchments that gives better NSE values using DDD_LN than
DDD_G.

The Masi catchment (5543 km2) is located in Northern
Norway and is relatively flat (90 % of its area is located below
600 m a.s.l. and its minimum and maximum elevation is 370
and 1085 m a.s.l. respectively) so that the snow melt season
is quite short and intense. Figure 10a shows the simulation of
SWE using SD_LN with optimized CV (θCV = 0.88), which
gave a NSE value for runoff of NSE= 0.75, and using SD_G,
which gave a NSE value for runoff equal to NSE= 0.72. In
Fig. 10b we have adjusted the CV value from θCV =0.88
to θCV =0.1, and the simulation of SWE using SD_LN no
longer exhibits the very strong positive trend seen in Fig. 10a;
it looks more realistic and very similar to that of SD_G. The
precision of runoff simulation was, however, affected and the
NSE value dropped from NSE= 0.75 to NSE= 0.60. A rea-
sonable conclusion may thus be that the slightly higher val-
ues for NSE and KGE using SD_LN is at the expense of
unrealistic values of SWE. The correlation analysis supports
this conclusion (see Table 3). The increase in SWE with time

Figure 10. Time series of simulated SWE for the Masi catch-
ment in Northern Norway with DDD_G (blue) and DDD_LN (red).
In (a) SWE is simulated with optimized CV= 0.77, which gives
a NSE= 0.75. In (b) SWE is simulated with adjusted CV= 0.1,
which gives a NSE= 0.60. Using DDD_G gives a NSE= 0.72.

of DDD_LN is not correlated to any CC but to the parameter
values of the method for spatial distribution of SWE, θCV.
The parameter θCV is found to be significantly correlated to
the skill score for predicting runoff, KGE; i.e. high values
of θCV gives high values of KGE. The high skill scores for
DDD_LN are clearly not due to a realistic process descrip-
tion of snow but rather to an inadequate model structure that
gets it right for the wrong reasons.

Figure 8 shows that, in general, SCA is better simulated
using DDD_G than DDD_LN. In the south-western region,
however, DDD_LN performs better than DDD_G, which un-
derestimates SCA. This region is characterized by a very
rugged topography, which may influence both the estimates
of SCA derived from the MODIS satellite and the quality
of the meteorological grid, as very few meteorological ob-
servations are located at high altitudes (Dyrrdal et al., 2012;
Saloranta, 2012). Further investigations relating the errors in
estimating SCA to other CCs, such as catchment gradients,
may explain the difference in results between DDD_LN and
DDD_G. Figure 11 shows a typical example where DDD_G
has estimates of SCA close to the observed especially dur-
ing late spring. Naturally, the problem of “snow towers” of
DDD_LN influences its ability to simulate a realistic de-
crease in SCA since small fractions of the catchments re-
mains snow covered at all times. The heavy tails of the
optimized accumulation distribution produced by DDD_LN
make a complete melt-out of the snow reservoir very dif-
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Figure 11. Time series of simulated SCA with DDD_G (blue) and
DDD_LN (red) together with MODIS derived SCA (green circles)
for catchment Tansvatn in Southern Norway.

ficult. DDD_G, in contrast, provides an accumulation dis-
tribution without the heavy tail, which appears as a better
choice with respect to the simulation of both SWE and SCA.
The difference between the two methods with respect to the
modelling of SCA became very clear when we compared
the average annual duration of the snow cover. DDD_ LN,
due to the positive trends in SWE, ended up with an almost
perennial snow cover for most of the catchments (see Fig. 9),
whereas DDD_G showed a variability in snow cover dura-
tions that is more consistent with the varying climate in Nor-
way. For both models the correlation analysis between snow
cover duration and CC showed that the duration of snow
cover was positively correlated to catchment size, mean ele-
vation and areal fraction of bare rock (area above the treeline)
and negatively correlated to the areal fraction of forest. Since
the areal fraction of forest and bare rock is highly correlated,
these are expected relations illustrating that both models have
a realistic snow distribution with respect to elevation.

A more realistically simulated SCA is important for many
applications. Updating of snow and hydrological models us-
ing observed SCA is dependent on realistic simulations of
SCA. A realistic simulation of SCA is also necessary for
the properly accounting of energy fluxes over an area partly
covered by snow (Liston, 1999; Essery and Pomeroy, 2004)
and is hence important for the assessment of hydrological
impacts of climate change. Without realistically simulated
SCA, we cannot expect credible simulations for climate pro-
jections for neither runoff dynamics nor energy fluxes.

SWE is represented here as the sum of correlated (in time)
spatial variables (solid precipitation). Precipitation events
such as snow are assumed to be gamma distributed in space

with parameters varying with intensity. The parameter scale,
α0, and decorrelation length,D, are estimated from observed
spatial moments of precipitation. Recall that the shape pa-
rameter ν0, is just set as one-tenth of α0 through the relation
E(y)=

ν0
α0
= 0.1 mm. From Fig. 1 we see that the variance

levels off, and even decreases, for increased spatial mean in-
tensity. The presented model captures this observed feature
since the variance will cease to increase as the correlation de-
creases with intensity (the number of summations). As cor-
relation approaches 0, we will have a sum of independent
events. According to the central limit theorem, such a sum
will have a normal distribution. The shape parameter of y,
ν0 and the correlation determines the rate of the convergence
to a normal distribution. For example, if the decorrelation
range is long, then more summations are needed for the spa-
tial frequency distribution of SWE to approach a normal dis-
tribution. The literature shows that empirical spatial distribu-
tion of SWE has a tendency to be positively skewed. This is
especially the case for many observations of SWE in Nor-
way in high alpine areas (Alfnes et al., 2004; Marchand and
Killingtveit, 2004; Marchand and Killingtveit, 2005). For
more lowland and forested areas, the distribution tends to be
more normal (Alfnes et al, 2004; Marchand and Killingtveit,
2004; Marchand and Killingtveit, 2005). In our modelling
framework, this would imply that we would expect small
shape parameters and long decorrelation lengths for moun-
tain areas and larger shape parameters together with short
decorrelation lengths for lower-lying forested areas. Table 4
show correlations and their significance (p values) between
the parameters α0 and D and the CC fraction of bare rock,
fraction of forest, mean elevation and catchment area. We
see that α0 is significantly correlated to the mountain/forest
and highland/lowland indices as expected. The decorrelation
length D is weakly correlated to the mean elevation in a
way implying shorter correlation lengths at high altitudes,
i.e. contrary to what is expected from reported shapes of
the PDF of SWE, and uncorrelated to the other indices. It
is promising, and somewhat unexpected, that correlation be-
tween α0(ν0) and catchment characteristics supports our the-
ory so clearly since the location of Norwegian precipitation
gauges, which is has a very poor representation at high ele-
vations (Dyrrdal et al., 2012; Saloranta, 2012), was not ex-
pected to discriminate this behaviour very well. The some-
what confusing results of the decorrelation length suggest a
dedicated study using a more dense network of precipitation
gauges.

As mentioned in the introduction, many models for the
spatial PDF of SWE have been proposed in the literature
(i.e. normal, gamma, log normal, mixed log normal). The
diversity in distributions is often addressed to the physical
processes responsible for the shape of the spatial distribu-
tion of SWE, which include wind, during and after the snow-
fall, spatial variability of precipitation and topographic fea-
tures. This topic is continuously debated in the literature (Lis-
ton, 2004; Skaugen, 2007; Lehning et al., 2008; Clark et al.,
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Table 4. Spearman correlations between model parameters and
catchment characteristics indicating alpine and lowland areas where
the spatial distribution of SWE is expected to vary. The bracketed
numbers indicate significance (p value).

Forest (%) Bare rock (%) Mean elevation Catchment size

α0 0.34 (0.00) −0.40 (0.00) −0.35 (0.00) −0.28 (0.02)
D 0.13 (0.29) −0.14 (0.24) −0.25 (0.03) −0.15 (0.19)

2011; Mott et al., 2011; Scipion et al., 2013) and, in addi-
tion, various spatial scales and landscape types interact and
further complicate the matter (Blöschl, 1999; Alfnes et al.
2004; Liston, 2004; Marchand and Killingtveit, 2004; Marc-
hand and Killingtveit, 2005). A major problem is that the
spatial distribution of snow and SWE is very hard to mea-
sure at the appropriate scale, i.e. the catchment scale, which
often covers different elevations and both forested and open
(alpine) areas. Various airborne observation techniques such
as laser scan (Melvold and Skaugen, 2013) and passive mi-
crowave (Vuyovich, 2014) are promising but restricted by
landscape features such as vegetation and topography and the
state of the snow (wet/dry). Consequently, investigations on
the spatial distribution of SWE has to rely on in situ mea-
surements, which seldom covers entire catchments. In this
study, in situ information (the spatial variability of solid and
liquid precipitation), is obtained from the station network of
precipitation gauges of the Norwegian Meteorological Insti-
tute, which measures precipitation at 2 m above ground. It
is highly probable that the observed spatial variability, mea-
sured near to the surface, captures information of the influ-
ence of the wind on precipitation in general and on snow-
fall in particular. This assumption is justified by the signif-
icant and relatively high correlations seen in Table 4 be-
tween the scale parameter, α0 (and hence, in our case, the
shape parameter, ν0), and landscape features such as eleva-
tion and vegetation and suggests a sensitivity to the exposure
of wind. Johansson and Chen (2003) demonstrate the influ-
ence of wind speed on the spatial distribution of precipitation
and Mott et al. (2011) and Lehning et al. (2008) show that
near-surface wind fields highly influence snow distribution
patterns through preferential deposition.

The method presented in this study does not include re-
distribution of SWE due to wind as a driving force for shap-
ing the spatial frequency distribution of SWE at the catch-
ment scale. Some authors suggest that this process occurs on
a spatial scale much smaller than the catchment scale (Lis-
ton, 2004; Melvold and Skaugen, 2013). In Figure 11 we see
that DDD_LN shows a better simulation of SCA for the start
of the melting period than DDD_G for at least two of the
years (2011 and 2014). The reason to why DDD_LN simu-
lates the initial development of snow-free areas better than
DDD_G is probably that SD_LN produces a generally more
positively skewed distribution of SWE than SD_G, and has,
hence, a higher frequency of small values of SWE that melts

quickly. Whereas the distribution of SD_G, which in general
seems to be more appropriate, should perhaps have a frac-
tion of the catchment populated with small values of SWE in
order to simulate this observed initial development of snow-
free areas. By including redistribution due to wind, we might
produce areas of shallow SWE, such as over wind-exposed
ridges which are known to become free of snow rather early
in spring.

Finally, it is important to keep in mind that this study aims
at determining the spatial frequency distribution of SWE for
elevation bands for a catchment. These areas may comprise
several square kilometres. The spatial distribution of SWE
for distributed hydrological modelling, i.e. simulating the
amount of SWE at specific locations, is another, much more
challenging, task which involves taking into account very
small-scale (< 25 m according to Lehning et al., 2008) land-
scape features and their complex relation to accumulation,
melting and redistribution of SWE.

5 Conclusions

In this paper a method for estimating the spatial frequency
distribution of SWE is implemented in the parameter parsi-
monious rainfall–runoff model DDD. The new method, first
described by Skaugen (2007) and further developed by Skau-
gen and Randen (2013) and here, has its parameters esti-
mated from observed spatial variability of precipitation mea-
sured from precipitation gauges. The new method (SD_G)
has hence no parameters to be optimized from calibration
against runoff unlike the current operational snow distribu-
tion routine (SD_LN), which has one calibration parameter.
The new method gives a dynamic presentation of the distri-
bution of SWE, which, at the start of the accumulation sea-
son, may be positively skewed but converges to a more sym-
metrical distribution as the accumulation season progresses.
The parameters of the method show significant correlations
with catchment characteristics discriminating between shel-
tered and wind-exposed areas.

DDD_G is tested for 71 catchments in Norway and lit-
tle loss in precision of predicted runoff is seen when skill
is measured with the NSE and KGE criteria. SWE is simu-
lated more realistically in that the seasonal snow is melted
out every year and no trend in SWE is observed, which is
consistent with the absence of trends in precipitation and
temperature. The current operational routine for snow dis-
tribution (SD_LN), however, displays a tendency to produce
ever increasing “snow towers” (Frey and Holzmann, 2015),
which in turn gives the erroneous impression of an increas-
ing trend in SWE and unrealistic annual durations of snow
cover, which for most catchments approach a full year. Such
behaviour can be remedied by adjusting the optimized pa-
rameter value for the spatial snow distribution, θCV, but at the
expense of the precision of simulated runoff. The simulated
SCA for both SD_G and SD_LN is compared to MODIS-
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derived SCA and SD_G has the lower RMSE. The differ-
ence in simulated SCA between the two models is especially
seen for median to low values of SCA. SD_LN can be seen
to simulate better SCA at the beginning of the melt season,
suggesting that SD_G has a too-low frequency of low SWE
values.

6 Data availability

NVE supports an open data policy; real-time and near-real-
time data are available at http://www.nve.no/en/15Water/
Data-databaser/Real-time-hydrological-data/ and historical
data are freely available at request to hydrology@nve.no.
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