

Supplement of

Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

Wenli Wang et al.

Correspondence to: Duoying Ji (duoyingji@bnu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 Supplementary Tables

2 **SI Table 1.** Climate data sets used to drive each model.

Model	Climate forcing data
CLM4.5	CRUNCEP4 ¹
CoLM	Princeton ²
ISBA	WATCH (1901-2010) ³
JULES	WATCH (1901-2001) ³
LPJ-GUESS	CRU TS 3.1 ⁴
MIROC-ESM	CMIP5 Drivers ⁵ , WATCH (1901-1978) ³
ORCHIDEE	WFDEI (1978-2009) ⁶
UVic	CRUNCEP4 ¹ , CRU ⁷ , UDel ⁸
UW-VIC	NCEP-NCAR ⁹

3

- 4 ¹Viovy and Ciais (2011) (<u>http://dods.extra.cea.fr/</u>)
- ²Sheffield et al. (2006) (<u>http://hydrology.princeton.edu/data.pgf.php</u>)
- ³Weedon et al. (2011) (<u>http://www.waterandclimatechange.eu/about/watch-forcing-data-20th-century</u>)
- ⁴Harris et al. (2013), University of East Anglia Climate Research Unit
- 8 ⁵Watanabe et al. (2011)
- 9 6<u>http://www.eu-watch.org/gfx_content/documents/README-WFDEI.pdf</u>
- ⁷Mitchell and Jones (2005) for temperature
- ⁸Willmott and Matsura (2001) for precipitation
- ⁹Kalnay et al. (2006)
- 13
- Harris, I., Jones, P.D., Osborn, T.J., and Lister, D.H.: Updated high-resolution grids of
 monthly climatic observations. Int. J. Clim., doi: 10.1002/joc.3711, 2013.
- 16 Kalnay, E. et al.: The NCEP Climate Forecast System. J. Clim., 19, 3483.3517, 2006.
- Mitchell, T.D., and Jones, P.D.: An improved method of constructing a database of monthly
 climate observations and associated high-resolution grids, Int. J. Clim., 25(6), 693-712, doi:
 10.1002/joc.1181, 2005.
- 20 Sheffield, J., Goteti, G., and Wood, E.F.: Development of a 50-yr high-resolution global
- dataset of meteorological forcings for land surface modeling, J. Clim., 19, 3088-3111,
 2006.
- Viovy, N. and Ciais, P.: CRUNCEP data set for 1901–2008, Tech. Rep. Version 4, Laboratoire des Sciences du Climat et de l'Environnement, 4078, 4122, 2011.
- Watanabe, S. et al.: MIROC-ESM 2010: model description and basic results of
 CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845–872,
 doi:10.5194/gmd-4-845-2011, 2011.

Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E., Österle, H., Adam, J.C.,
Bellouin, N., Boucher, O., and Best, M.: Creation of the WATCH Forcing data and its use
to assess global and regional reference crop evaporation over land during the twentieth
century. J. Hydromet., 12, 823-848, doi: 10.1175/2011JHM1369.1, 2011.
Willmott, C.J., and Matsuura, K.: Terrestrial air temperature and precipitation: monthly and

- 6 annual time series (1950-1999) (version 1.02), Center for Climate Research, University of
- 7 Delaware, Newark, DE, 2001.

SI Table 2. Russian-station-location averaged error statistics for air temperature (°C) and 1 precipitation (mm/d) for winter 1980-2000. For each variable, the maximum available number 2 of observations (n) is used. meanobs and stdevobs are the station-observed mean and interannual 3 variability (standard deviation), while stdev is the standard deviations of each model. Both, air 4 5 temperature and precipitation are from the climate forcing data sets for all models, except for 6 MIROC-ESM which simulates both. BIAS is the mean error 'model minus observation', RMSE is the root-mean-square error, and both represent biases in the climate forcing 7 compared to the station observations (except for MIROC-ESM). 8

9

	Air temperature (n=518)			Precipitation (n=512)		
	$mean_{obs}$ = -16.3 °C			mean _{obs} =0.89 mm/d		
	stdev _{obs} =2.2 °C			stdev _{obs} =0.5 mm/d		
	BIAS	RMSE	stdev	BIAS	RMSE	stdev
CLM4.5	-4.7	5.0	2.0	-0.05	0.6	0.1
CoLM	-0.9	2.0	2.1	0.3	0.7	0.3
ISBA	-1.6	2.3	2.2	0.2	0.6	0.3
JULES	-2.5	2.9	2.3	0.2	0.6	0.3
LPJ-GUESS	-0.8	2.0	2.1	-0.03	0.5	0.1
MIROC-ESM	2.7	5.2	2.2	0.5	0.9	0.3
ORCHIDEE	-1.4	2.4	2.2	0.3	0.6	0.3
UVic	-1.8	2.5	2.1	-0.2	0.6	0.1
UW-VIC	-1.1	2.2	2.1	0.3	0.6	0.4

1 Supplementary Figures

2

3 SI Figure 1.Histogram of seasonal winter mean snow depth from 268 Russian stations

4 between 1980-2000.

SI Figure 2. Variation of ∆T (℃) (the difference between soil temperature at 20 cm depth and air temperature) with snow depth (cm) for winter 1980-2000. The dots represent the medians of 5 cm snow depth bins and the upper and lower bars indicate the 25th and 75th percentiles, calculated from all Russian station grid points (n=268) and 21 individual winters. Color represents two different air temperature regimes (redish: -15 ℃<AirT≤ -5 ℃, blueish: AirT≤ -25 ℃) for early (Nov.-Dec.; ND) and late (Jan.-Feb.; JF) winter.

SI Figure 3.Spatial maps of the correlation coefficients between soil temperature at 20 cm
depth and air temperature for winter 1980-2000. Regions with greater than 95% significance
are hashed.

SI Figure 4.Spatial maps of the correlation coefficients between soil temperature at 20 cm
depth and snow depth for winter 1980-2000. Regions with greater than 95% significance are
hashed.

2 SI Figure 5. Spatial maps of mean air temperature (°C) for winter 1980-2000.

SI Figure 6. Spatial maps of mean precipitation (mm/d) for winter 1980-2000.

2 SI Figure 7. Spatial maps of snow fall (mm/d) for winter 1980-2000.

2 SI Figure 8. Spatial maps of ΔT (°C) (difference between soil temperature at 20 cm depth and

3 air temperature) for winter 1980-2000.

2 SI Figure 9. Spatial maps of snow density (kg m⁻³) (calculated by the quotient of snow water

³ equivalent and snow depth, if not directly output) for winter 1980-2000.