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Abstract. We address the inverse problem of inferring the
basal geothermal heat flux from surface velocity observations
using a steady-state thermomechanically coupled nonlinear
Stokes ice flow model. This is a challenging inverse prob-
lem since the map from basal heat flux to surface velocity
observables is indirect: the heat flux is a boundary condition
for the thermal advection–diffusion equation, which couples
to the nonlinear Stokes ice flow equations; together they de-
termine the surface ice flow velocity. This multiphysics in-
verse problem is formulated as a nonlinear least-squares op-
timization problem with a cost functional that includes the
data misfit between surface velocity observations and model
predictions. A Tikhonov regularization term is added to ren-
der the problem well posed. We derive adjoint-based gradient
and Hessian expressions for the resulting partial differential
equation (PDE)-constrained optimization problem and pro-
pose an inexact Newton method for its solution. As a con-
sequence of the Petrov–Galerkin discretization of the energy
equation, we show that discretization and differentiation do
not commute; that is, the order in which we discretize the
cost functional and differentiate it affects the correctness of
the gradient. Using two- and three-dimensional model prob-
lems, we study the prospects for and limitations of the infer-
ence of the geothermal heat flux field from surface velocity
observations. The results show that the reconstruction im-
proves as the noise level in the observations decreases and

that short-wavelength variations in the geothermal heat flux
are difficult to recover. We analyze the ill-posedness of the
inverse problem as a function of the number of observations
by examining the spectrum of the Hessian of the cost func-
tional. Motivated by the popularity of operator-split or stag-
gered solvers for forward multiphysics problems – i.e., those
that drop two-way coupling terms to yield a one-way cou-
pled forward Jacobian – we study the effect on the inversion
of a one-way coupling of the adjoint energy and Stokes equa-
tions. We show that taking such a one-way coupled approach
for the adjoint equations can lead to an incorrect gradient
and premature termination of optimization iterations. This is
due to loss of a descent direction stemming from inconsis-
tency of the gradient with the contours of the cost functional.
Nevertheless, one may still obtain a reasonable approximate
inverse solution particularly if important features of the re-
constructed solution emerge early in optimization iterations,
before the premature termination.

1 Introduction

We consider the following inverse problem: to infer the un-
known basal geothermal heat flux field given surface velocity
observations and a non-Newtonian full Stokes ice sheet flow
model governed by thermomechanically coupled mass, mo-
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mentum, and energy equations. Grid-based discretization of
the basal heat flux field leads to a high-dimensional inverse
problem. The main aim of this paper is to present an efficient
method for solving this large-scale coupled-physics inverse
problem and to use model problems to study the prospects
for, and limitations of, inferring the geothermal heat flux
from surface ice velocities.

Ice sheet models are characterized by unknown or uncer-
tain parameters stemming from the lack of direct observa-
tions of the interior and the base of the ice sheet. Unknown
parameters include those that represent basal friction, basal
topography, rheology, geothermal heat flux, and ice thick-
ness. The geothermal heat flux parameter field, in particu-
lar, has a strong influence on the thermal state of the ice
and hence plays a critical role in understanding the dynam-
ics of the ice sheet through its effect on basal and internal
ice temperatures (Fahnestock et al., 2001; Maule et al., 2005;
Petrunin et al., 2013; Fisher et al., 2015). The direct mea-
surement of the geothermal heat flux is only locally avail-
able (Fisher et al., 2015). Estimates of this parameter field
have been obtained via inference using global seismic to-
mographic models (Shapiro and Ritzwoller, 2004), satellite
magnetic data models (Maule et al., 2005), or tectonic mod-
els (Pollack et al., 1993). However, these inferred basal heat
flux fields do not agree with one another in large regions.
While sensitivity studies show that the resulting uncertain-
ties in the geothermal heat flux have an impact on the ice
flow, especially in the slow flow regions (Pollard et al., 2005;
Larour et al., 2012), inversion for the geothermal heat flux
from surface velocity observations has not been addressed
previously to the best of our knowledge.

When formulating the thermomechanically coupled in-
verse problem, we must assume an appropriate thermal
regime, which depends critically on the geothermal heat flux.
Ice sheets and glaciers can be in one of the following four
thermal states: (1) all of the ice is below the melting point;
(2) the melting point is reached only at the bed; (3) a basal
layer of finite thickness is at melting point; or (4) all of the
ice is at the melting point except for a surface layer (Paterson,
1994, p. 205). While in the first case the thermal basal bound-
ary condition is simply characterized by the geothermal heat
flux, in the other three cases this condition must be modified
to include the heat generated by friction at the base and to ac-
count for melting. Due to the unknown basal state of the ice,
these latter three cases lead to more complex inverse prob-
lems. These inverse problems typically involve variational
inequalities in the forward problem since the thermal regime
depends on the geothermal heat flux. Here, we assume that all
of the ice is below the melting point. In the model problems
studied in this paper we ensure this by providing a moderate
(about the average of the geothermal heat flux at the base of
Antarctica) geothermal heat flux. In addition, we assume the
ice flow is in a steady state. These assumptions result in a
tractable inverse problem that allows us to study the sensi-

tivity of the ice flow velocity with respect to the geothermal
heat flux and thus the characteristics of the inverse problem.

The inverse problem is formulated as a regularized
nonlinear least-squares minimization problem governed by
thermomechanically coupled nonlinear Stokes and thermal
advection–diffusion equations. The cost functional we mini-
mize represents the sum of the squared differences between
observed and predicted surface velocities and a regulariza-
tion term that renders this ill-posed inverse problem well
posed. Discretizing the infinite-dimensional geothermal heat
flux field and the governing partial differential equations
(PDEs) leads to a large-scale numerical optimization prob-
lem; as such, derivative-based optimization methods offer the
best hope for its efficient solution (Gunzburger, 2003; Hinze
et al., 2009; Borzì and Schulz, 2012; De los Reyes, 2015).
In Petra et al. (2012), we presented an infinite-dimensional
adjoint-based inexact Gauss–Newton method for the infer-
ence of basal friction and rheology parameters from surface
velocity observations and a nonlinear Stokes model of ice
sheet flow. Here, we extend our previous work to the present
inverse problem of inferring the geothermal heat flux in a
thermomechanically coupled ice flow model. This problem
also serves as a prototype for a broader class of multiphysics
inverse problems.

We systematically study how well finite-amplitude vari-
ations of the geothermal heat flux can be recovered from
noisy surface velocity observations. To be precise, we invert
for geothermal heat flux fields that contain large and short-
wavelength variations using velocity observations with vari-
ous degrees of error. Our results show that the quality of the
reconstructed geothermal heat flux deteriorates with shorter-
wavelength variations and with increasing noise level in the
observations. In addition, we study the influence of the num-
ber of observations and find that the reconstruction improves
as the number of observation points increases, provided the
discretization of the model equations is sufficiently fine to
capture the additional information from a larger number of
observations. To analyze prospects and limitations of the in-
version, we also investigate the spectrum of the Hessian of
the data misfit part of the cost functional, which provides in-
formation about directions in parameter space that can be re-
covered from observations.

A common approach to the numerical solution of multi-
physics problems uses operator splitting; namely, motivated
by the difficulty of either solving a two-way coupled sys-
tem or computing the Jacobian of a coupling term, one dis-
cards certain coupling terms in the Jacobian of the forward
problem to reduce the two-way coupled problem to one that
is coupled in one direction. The coupled problem is then
solved by iterating back and forth between the solution of
single physics components. This approach, which we term
“one-way coupled”, can often yield convergence to the solu-
tion of the fully coupled multiphysics problem, depending on
the spectral radius of a certain iteration matrix. The one-way
coupled approach has been used successfully for the solution

The Cryosphere, 10, 1477–1494, 2016 www.the-cryosphere.net/10/1477/2016/



H. Zhu et al.: Inversion of geothermal heat flux in a thermomechanically coupled Stokes ice sheet model 1479

of thermomechanically coupled ice sheet forward problems
in Dahl-Jensen (1989), Hvidberg (1996), Price et al. (2007),
Zwinger et al. (2007), and Zhang et al. (2011).

However, when solving the corresponding multiphysics
inverse problem using gradient-based methods, the use of
such a one-way coupled approach may be problematic. In
particular, sacrificing coupling terms in the Jacobian (while
often acceptable for the forward problem) will lead to an in-
correct adjoint operator, since this operator is given by the
transpose of the Jacobian. This approximate adjoint opera-
tor leads to an incorrect adjoint solution, which then leads
to an incorrect gradient. Since the necessary optimality con-
dition for the inverse problem states that the gradient must
vanish, an incorrect gradient leads to the wrong solution of
the inverse problem. Moreover, since line search methods re-
quire descent on the cost functional in a direction based on
the gradient, the inconsistency between the cost functional
and its gradient can lead to failure of the line search and thus
lack of convergence. Thus, sacrificing coupling terms as is
commonly done for the forward problem may not lead to
convergent inverse iterations, and if the inverse iterations do
converge, they will converge to the wrong inverse solution.

In general, how much of a difference this will make to the
solution of the inverse problem will depend on the strength
of the coupling terms that have been neglected in the ad-
joint problem. In particular, despite a gradient that has been
computed from an incorrect adjoint equation, and early ter-
mination of optimization iterations, one might still obtain
a reasonable approximation of the correct inverse solution.
To illustrate these issues in the context of a thermomechan-
ically coupled ice sheet inverse problem, we neglect certain
coupling terms in the Jacobian (as might be done in a for-
ward solver), leading to an incorrect adjoint operator. We
then compare inversion results obtained using an approxi-
mate gradient based on a one-way coupled adjoint operator –
which we refer to as a “one-way coupled gradient” – with in-
versions that use the correct gradient (i.e., based on the fully
coupled adjoint). The results indicate that using this one-way
coupled gradient instead of the correct gradient leads to a de-
terioration in the convergence rate of the inverse solver and
eventual failure of the line search, but the resulting inverse
solution for the geothermal flux does not differ substantially
from the correct inverse solution.

The remaining sections of this paper are organized as fol-
lows. In Sect. 2, we describe the forward ice sheet problem
and the corresponding inverse problem for the geothermal
heat flux. In Sect. 3, we give expressions for the adjoint-
based gradient and action of the Hessian of the cost func-
tional. Then, in Sect. 4 we present the discretization of the
forward problem, which involves a stabilization technique
applied to prevent oscillatory solutions when the heat equa-
tion is advection-dominated, and discuss the optimize-then-
discretize (OTD) and discretize-then-optimize (DTO) ap-
proaches for computing the gradient of the cost functional.
In Sect. 5, we present inversion results for two- and three-

dimensional model problems and in Sect. 6 we discuss the
fully coupled versus one-way coupled approaches to com-
puting the gradient for thermomechanically coupled ice sheet
inverse problem.

2 Formulation of the inverse problem

We first state the forward problem and then formulate the in-
verse problem to infer the geothermal heat flux from surface
velocity observations.

2.1 The forward problem

Ice can be modeled as viscous, incompressible, non-
Newtonian, heat-conducting fluids. Assuming the mass of ice
occupying a domain� is in steady state, the balance of mass,
linear momentum, and energy states that (Hutter, 1983)

∇ ·u= 0, (1)
−∇ · σ u = ρg, (2)
ρcu · ∇θ −∇ · (K∇θ)= 2η(u,θ)ε̇u : ε̇u, (3)

where u is the velocity field, θ the temperature field, σ u the
stress tensor, ρ the density, g the acceleration of gravity, c the
specific heat capacity, and K the thermal conductivity. The
stress, σ u, can be decomposed as σ u= τu− I p, where τu is
the deviatoric stress tensor, p the pressure, and I the second-
order unit tensor. A commonly employed isotropic constitu-
tive law is Glen’s flow law (Glen, 1955):

τu = 2η(u,θ)ε̇u, with η(u,θ) :=
1
2
A(θ)−

1
n ε̇

1−n
2n

II , (4)

where η(u, θ) is the effective viscosity, ε̇u := 1
2

(∇ u+∇ uT ) the strain rate tensor, ε̇II := 1
2 ε̇u : ε̇u the

second invariant of the strain rate tensor (where “:” de-
notes the scalar product between second-order tensors),
and n Glen’s flow law exponent. Here, A depends on
the ice temperature according to the Arrhenius relation
A(θ)=A0 exp(− Q

Rθ
), whereQ is the activation energy, R is

Boltzmann’s constant, and A0 is a pre-exponential constant
(Paterson, 1994). The appropriate value of Glen’s flow law
exponent n has been a matter of debate; one could invert
for it as a spatial field from surface velocities (Petra et al.,
2012). However, here we use the constant value n= 3, which
is typically used in glaciology (Paterson, 1994; Van der
Veen, 2013). To avoid singularities in Glen’s flow law, we
add a small positive number ε to ε̇II in Eq. (4), such that the
modified viscosity

η(u,θ) :=
1
2
A(θ)−

1
n (ε̇II+ ε)

1−n
2n (5)

is bounded from below (Hutter, 1983; Jouvet and Rappaz,
2012).
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The energy equation (Eq. 3) is an advection–diffusion
equation for the temperature field with a strain heating term
on the right-hand side. Note that the Stokes system (Eqs. 1
and 2) and the energy equation (Eq. 3) are two-way coupled:
the velocity governed by the Stokes equations is the advec-
tion velocity in the energy equation and it additionally enters
through the strain heating term on the right side of Eq. (3).
In the opposite direction, the temperature enters in the Stokes
equations through the viscosity term given in Eq. (4) and thus
affects the flow field.

The domain � is taken as a two- or three-dimensional ice
slab with the following boundary conditions. On the top sur-
face, 0t, we impose a traction-free boundary condition for
the momentum equation and an imposed temperature for the
energy equation. At the base of the ice sheet, 0b, we assume
that the ice is below the pressure melting point and frozen to
the bedrock. Hence, the boundary conditions are no-slip con-
ditions for the momentum equation and thermal flux condi-
tions for the energy equation representing the flux of geother-
mal heat into the ice from below (Greve and Blatter, 2009).
Additional conditions for the lateral boundaries for the model
problems used in our study are specified in Sect. 5.

In summary, the forward problem is given by

∇ ·u= 0 in �, (6)
−∇ · σ u = ρg in �, (7)
ρcu · ∇θ −∇ · (K∇θ)= 2η(u,θ)ε̇u : ε̇u in �, (8)
σ un= 0, θ = θs on 0t, (9)
u= 0, K∇θ ·n=G on 0b, (10)
+ additional lateral boundary conditions (BCs),

where n is the outward unit normal vector on 0t or 0b,
θs is the prescribed temperature at the top surface, G is the
geothermal heat flux, and the expressions for the stress σ u
have been given previously (see Table 1 for the primary vari-
ables used in this paper).

Next, we present a weak form of the forward problem
(Eqs. 6–10), which serves as the basis for the finite element
discretization of these equations (Hughes, 2000) and is also
used in the Lagrangian functional in Sect. 3. This weak form
is found by multiplying the Stokes system (Eqs. 1 and 2)
and the energy equation (Eq. 3) by test functions, integrating
over �, integrating by parts where appropriate and adding
up the three weak equations. The weak form of the forward
problem (Eqs. 6–10) is thus: find (u, p, θ)∈U ×P × T such
that

a(u,p,θ; v̂, q̂, λ̂)= 〈ρg, v̂〉�+〈G, λ̂〉0b , (11)

for all test functions (v̂, q̂, λ̂)∈U ×P × T0, where

Table 1. Primary variables in the forward and adjoint problems.

Symbol Variable

u velocity
p pressure
θ absolute temperature
σu stress tensor
η effective viscosity
ε̇u strain rate tensor
ε̇II the second invariant of the strain rate tensor
n the outward unit normal vector
θs surface temperature
G geothermal heat flux
J cost functional
B observation operator
R regularization
T tangential operator
γ regularization parameter
G gradient
H Hessian
v adjoint velocity
q adjoint pressure
λ adjoint temperature
B∗ adjoint observation operator
σ v adjoint stress tensor
ε̇v adjoint strain rate tensor

a(u,p,θ; v̂, q̂, λ̂)=

∫
�

(2η(u,θ)ε̇u : ε̇v̂ −p∇ · v̂− q̂∇ ·u)dx

+

∫
�

(ρcλ̂u · ∇θ +K∇θ · ∇λ̂)dx

−

∫
�

(
2λ̂η(u,θ)ε̇u : ε̇u

)
dx,

and

〈ρg, v̂〉� =

∫
�

ρg · v̂dx, and 〈G, λ̂〉0b =

∫
0b

λ̂Gds.

Here, ε̇v̂ is the strain rate tensor based on v̂. The spaces in the
above equations are defined as

U =
{
u :�→ Rd

∣∣ u|0b = 0
}
,

P = {p :�→ R},
T =

{
θ :�→ R

∣∣ θ |0t = θs
}
,

T0 =
{
λ̂ :�→ R

∣∣ λ̂|0t = 0
}
,

Q= {G : 0b→ R} , (12)

where all functions are assumed to be sufficiently regular for
the weak form Eq. (11) to be well defined. In the next sec-
tion, we formulate an inverse problem to infer the unknown
geothermal heat flux G present in the basal boundary condi-
tions from surface velocity observations.
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2.2 The inverse problem

The geothermal heat flux field G(x) is, in general, not di-
rectly observable and thus uncertain. For instance, the current
estimates forG(x) in Antarctica differ significantly (Shapiro
and Ritzwoller, 2004; Maule et al., 2005). Therefore, our
goal is to infer this field from available surface ice veloc-
ity observations by exploiting the temperature dependence of
the flow, which enters through the dependence of the viscos-
ity on the ice temperature. The inverse problem is formulated
as follows: given (possibly noisy) pointwise observations of
the ice surface velocity, uobs, we wish to infer the geother-
mal heat flux field G(x) at the base of the ice sheet that best
reproduces the observed velocity via the coupled thermome-
chanics ice flow model Eqs. (6)–(10). This can be formulated
as the following nonlinear least-squares optimization prob-
lem:

minG∈QJ (G) :=
1
2
|Bu(G)−uobs

|
2
+R(G), (13)

where the dependence of the velocity u on the geothermal
heat flux G is given by the solution of the coupled thermo-
mechanics ice flow model Eqs. (6)–(10), and B is an observa-
tion operator that maps the surface velocity field to velocity
observations at a set of observation points on 0t.

The first term in the cost functional J (G) is the data mis-
fit that represents the error between the observed velocity
field uobs and that predicted by the thermomechanics ice flow
model, u. The regularization term R(G) imposes regularity
on the inversion field, such as smoothness. Often, this reflects
prior knowledge on the model parameters. In the absence of
regularization, the inverse problem is ill posed; in particu-
lar, the solution is not unique in that many model parameter
fields may be consistent with the data to within the observa-
tional noise, and thus the solution is highly sensitive to errors
in the observations (Engl et al., 1996; Vogel, 2002). For in-
stance, as will be discussed in Sect. 5, short-wavelength com-
ponents in the geothermal heat flux cannot be identified from
surface observations and thus will have to be constrained by
the regularization. Here we apply a gradient-type Tikhonov
regularization:

R(G) :=
γ

2

∫
0b

|T∇G|2ds, (14)

where T := I −n⊗n is the tangential operator, “⊗” repre-
sents the tensor (or outer) product, and I is the second-order
unit tensor. This regularization imposes a greater penalty on
more oscillatory components ofG, and, thus, smoothly vary-
ing fields are preferred in the inversion of the geothermal heat
flux. The regularization parameter γ > 0 controls the strength
of the imposed smoothness relative to the data misfit.

3 Solution of the inverse problem via an adjoint-based
inexact Newton method

To compute the minimizer for the large-scale optimiza-
tion problem Eq. (13), we employ a derivative-based de-
scent method and thus require derivatives of the nonlin-
ear least-squares optimization problem Eq. (13) with re-
spect to the parameter G. To improve over linearly con-
vergent methods (such as the nonlinear conjugate gradients
(CG) method) or superlinearly convergent methods (such
as limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) method), here we advocate a Newton method, which
employs Hessian information (i.e., second derivatives) to
provide an (asymptotic) quadratic convergence rate. More-
over, typically Newton’s method converges in a number of it-
erations that is independent of the parameter dimension/mesh
size, which is typically not true of gradient-only methods
(Petra et al., 2012). Beyond the faster convergence, in our ex-
perience the use of Hessian information for highly nonlinear
inverse problems such as those involving ice sheet models is
typically able to obtain a reduction of another 1 or 2 orders
of magnitude in the norm of the gradient, leading to the ex-
traction of additional details in the reconstructed parameter
field.

Starting with an initial guess for the parameter field G,
Newton’s method iteratively updates the parameter field
based on minimizing a sequence of quadratic approximations
of the cost functional, J , using gradient and Hessian infor-
mation of J with respect to G. That is, the parameter is up-
dated by

Gnew =G+αG̃, (15)

where G is the current model parameter field, α is the step
length, appropriately chosen so that the cost functional J is
sufficiently decreased at each iteration, and G̃ is the direction
which is obtained by solving the linear system

H(G)(G̃)=−G(G). (16)

Here, G(G) andH(G) denote the gradient and the Hessian of
the least-squares cost functional J , respectively, evaluated at
the current parameter field G.

In this section, we provide expressions for the gradi-
ent G(G) and Hessian H(G). For the efficient computation
of gradient and Hessian operators, we employ adjoint meth-
ods (see, for example, Gunzburger, 2003; Tröltzsch, 2010;
Borzì and Schulz, 2012). All expressions in this section are
given in infinite-dimensional form, which has several ad-
vantages compared to discretizing the optimization problem
first and then differentiating. First, one avoids differentiat-
ing through artifacts of the discretization or solver, which
may not even be differentiable. Second, it is much easier and
“cleaner” to derive gradient and Hessian information at the
infinite-dimensional level. Third, the resulting expressions
are in weak form, which provides a natural and systematic
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path to discretization by Galerkin finite elements. The down-
side to differentiating at the infinite-dimensional level is that
the resulting gradient and Hessian expressions may not be
“consistent”. These issues will be discussed in the next sec-
tion.

In what follows, we use the formal Lagrange approach,
which computes the gradient by taking variations of a La-
grangian functional. The Lagrangian functional L combines
the cost functional Eq. (13) with the weak form Eq. (11) of
the forward problem, with test functions v̂, q̂, and λ̂. These
test functions act as Lagrange multipliers and become the
adjoint velocity v, adjoint pressure q, and adjoint tempera-
ture λ:

L(u,p,θ;v,q,λ; G) := J (G)+ a(u,p,θ;v,q,λ)
−〈ρg, v〉�−〈G,λ〉0b . (17)

The gradient of J with respect to the unknown heat fluxG
is found by requiring that variations of the LagrangianLwith
respect to the forward and adjoint variables vanish. The gra-
dient G(G) is then found by taking the variation of L with
respect to G. In strong form, the gradient evaluated at G,
G(G), is then given by

G(G) :=
{
−∇ · (γT∇G)− λ on 0b,

(γT∇G) ·n on ∂0b,
(18)

where n is the outer normal vector on ∂0b. Variations of L
with respect to the adjoint variables (v, q, λ) simply recover
the forward problem. However, variations of L with respect
to the forward variables (u, p, θ ) yield the so-called “adjoint
problem”, which is given in strong form by

∇ · v = 0 in �, (19)
−∇ · σ v =−ρcλ∇θ in�, (20)
− ρcu · ∇λ−∇ · (K∇λ)= Fλ in �, (21)

λ= 0, σ vn= B∗
(
uobs
−Bu

)
on 0t, (22)

v = 0, K∇λ ·n= 0 on 0b, (23)
+ additional lateral BCs.

Here, B∗ is the adjoint of the observation operator, which
maps point observations on 0t to a function. In particular, if
B corresponds to the evaluation of a sufficiently smooth func-
tion at points, the adjoint B∗ maps a finite-dimensional vec-
tor to the sum of Dirac delta functions corresponding to these
points, weighted by the input vector. The adjoint stress σ v in
Eq. (20) depends on the forward velocity u and the tempera-
ture θ and is given by

σ v := 2η(u,θ)
[(
I +

1− n
2n

ε̇u⊗ ε̇u

ε̇II+ ε

)
ε̇v −

1+ n
n

λε̇u

]
−Iq,

where ε̇v is the adjoint strain rate tensor and is given by
1
2 (∇ v+∇ v

T ), I is the fourth-order identity tensor, and

⊗ represents the tensor (or outer) product between second-
order tensors. Note that σ v coincides with the adjoint stress
derived by Petra et al. (2012) for the isothermal Stokes model
except the term proportional to the adjoint temperature λ,
which arises due to the strain heating term on the right-hand
side of Eq. (8). The right-hand side in the adjoint energy
equation (Eq. 21) is given by

Fλ :=
2Q
nRθ2 η(u, θ)(ε̇u : ε̇v − λε̇u : ε̇u) .

As can be seen from Eqs. (19)–(23), the adjoint problem is
driven by the misfit between observed and predicted surface
velocity on the top boundary, i.e., B∗(uobs

−Bu). Since the
observations are of ice velocity on the top surface 0t, the data
misfit shows up in the adjoint problem as a source term for
the Neumann boundary condition on 0t, Eq. (22). Observa-
tions in the interior of � would amount to a similar contri-
bution on the right-hand side of Eq. (20). Since the adjoint
equation depends on (u, p, θ), each gradient computation
also requires the solution of the forward problem (Eqs. 6–
10). Solution of the adjoint problem (Eqs. 19–23) provides
the adjoint temperature λ needed to evaluate the gradient in
Eq. (18).

Now that the computation of the gradient, which forms the
right-hand side of the Newton system Eq. (16) has been de-
scribed, we present the computation of the Hessian operator,
H, on the left-hand side of the Newton system. We note that
explicitly forming and storing the Hessian matrix resulting
upon discretization is not an option, since computing each
column would require at least a linearized forward solve. In-
stead, we solve the Newton system Eq. (16) using the lin-
ear CG method, which requires not the explicit Hessian but
rather only the action of the Hessian on a vector at each CG
iteration. We next present expressions for this Hessian ac-
tion on vectors in terms of the solution of a pair of linearized
forward and adjoint problems. These expressions are simply
stated here; an analogous derivation, for the isothermal case,
is presented in Petra et al. (2012). The action of the Hessian
operator in a given CG direction G̃, evaluated at the current
iterate, G, can be expressed in strong form as

H(G)(G̃) :=
{
−∇ · (γT∇G̃)− λ̃ on 0b,

(γT∇G̃) ·n on ∂0b
. (24)

Beyond the forward and adjoint equations that must be
solved to evaluate the gradient, the Hessian action requires
two additional forward-like equations: the “incremental for-
ward” and “incremental adjoint’ equations. These can be de-
rived using second derivatives of the Lagrangian functional
(Borzì and Schulz, 2012). The resulting incremental forward
problem, which is to be solved for the incremental forward
velocity, pressure, and temperature variables (̃u, p̃, θ̃ ), is
given by

∇ · ũ= 0 in�, (25)
−∇ · σ ũ = 0 in�, (26)
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ρcu · ∇ θ̃ −∇ · (K∇ θ̃ )= Fθ̃ in �, (27)

θ̃ = 0, σ ũn= 0 on 0t, (28)

ũ= 0, K∇ θ̃ ·n= G̃ on 0b, (29)
+ additional lateral BCs

with

σ ũ := 2η(u,θ)
[(
I +

1− n
2n

ε̇u⊗ ε̇u

ε̇II+ ε

)
ε̇ũ−

Q

nRθ2 θ̃ ε̇u

]
− I p̃,

Fθ̃ := −ρcũ · ∇θ + 2η
(

1+ n
n

ε̇u : ε̇u−
Q

nRθ2 θ̃ ε̇u : ε̇u

)
.

Note that the incremental forward problem Eqs. (25)–(29)
resembles the forward problem and in fact corresponds to a
linearized (with respect to all variables) version of it. Both
the operator and the right-hand side depend on the forward
variables (u, p, θ), and the right-hand side also depends on
the CG direction G̃.

The resulting incremental adjoint problem, to be solved for
the incremental adjoint velocity, pressure, and temperature
(̃v, q̃, λ̃), is then given by

∇ · ṽ = 0 in �, (30)

−∇ · σ ṽ + ρc̃λ∇θ =∇ · τ v − ρcλ∇ θ̃ in �, (31)

− ρcu · ∇λ̃−∇ · (K∇λ̃)= Fλ̃+ F̂ in �, (32)

λ̃= 0, σ ṽn=−B∗Bũ− τ vn on 0t, (33)

ṽ = 0, K∇λ̃ ·n= 0 on 0b, (34)
+ additional lateral BCs

with

σ ṽ := 2η(u,θ)
[(

I+
1− n

2n
ε̇u⊗ ε̇u

ε̇II+ ε

)
ε̇ṽ −

1+ n
n

λ̃ε̇u

]
− I q̃,

τ v : = 2η(u,θ)
[

1− n
2n

(
ε̇u : ε̇v

ε̇II+ ε
I+

ε̇u⊗ ε̇v + ε̇v ⊗ ε̇u

ε̇II+ ε

)
ε̇ũ

+
1− n

2n
1− 3n

2n
(ε̇u : ε̇v)(ε̇u⊗ ε̇u)

(ε̇II+ ε)
2 ε̇ũ

−
1+ n
n

λ

(
I+

1− n
2n

ε̇u⊗ ε̇u

ε̇II+ ε

)
ε̇ũ

+
Q

nRθ2 θ̃

(
1+ n
n

λε̇u−

(
I+

1− n
2n

ε̇u⊗ ε̇u

ε̇II+ ε

)
ε̇v

)]
,

Fλ̃ :=
2Q
nRθ2 η(u,θ)

(
ε̇u : ε̇ṽ − λ̃ε̇u : ε̇u

)
,

F̂ := ρcũ · ∇λ+
2Qη(u,θ)
nRθ2 ε̇ũ : ε̇v

+
2Qη(u,θ)
nRθ2

(
1− n

2n
ε̇u : ε̇ũ

ε̇II+ ε
ε̇u : ε̇v −

1+ n
n

λε̇u : ε̇ũ

)
−

2Qθ̃η(u,θ)
nRθ2

(
Q

nRθ2 +
2
θ2

)
(ε̇u : ε̇v − λε̇u : ε̇u) .

Note that the incremental adjoint problem Eqs. (30)–(34) re-
sembles the adjoint problem and is in fact its linearization

with respect to the forward and adjoint variables and the un-
known geothermal heat flux. Its operator depends on the for-
ward variables only (as does the incremental forward opera-
tor), while its right-hand-side source terms depend not just on
the forward variables (as does the incremental forward prob-
lem) but also on the adjoint and incremental forward vari-
ables.

In conclusion, to evaluate the expression for the gradient
Eq. (18) for a given value of the geothermal heat flux G, we
first solve the forward problem Eqs. (6)–(10), followed by
the adjoint problem Eqs. (19)–(23) (given the forward solu-
tion). To then evaluate the Hessian action Eq. (24) in a given
direction G̃ at each CG iteration, we solve the incremental
forward problem Eqs. (25)–(29) (given the forward solution)
and then solve the incremental adjoint equation (Eqs. 30–34)
(given the forward, adjoint, and incremental forward solu-
tions).

It is well known that the Newton update direction com-
puted by solving Eq. (16) is a descent direction only if the
Hessian is positive definite, which is only guaranteed close
to a minimizer (Nocedal and Wright, 2006). The remedy we
apply here (for more details, see Petra et al., 2012; Bangerth,
2008) is to neglect terms in the Hessian expression that in-
volve the adjoint variable, that is, the terms highlighted in
blue in Eqs. (31)–(33). This leads to the so-called Gauss–
Newton approximation of the Hessian (Nocedal and Wright,
2006), which (with appropriate regularization) is guaranteed
to be positive definite. Moreover, since accurate solution of
the Newton system Eq. (16) is needed only close to the min-
imum of the regularized data misfit functional J , we termi-
nate the CG iterations early for iterates that are far from the
converged solution. This so-called “inexact Newton” method
terminates the CG iterations when the norm of the residual
of the linear system Eq. (16) drops below a tolerance that is
proportional to the norm of the gradient; i.e., we terminate at
CG iteration i when

|H(G)
(
G̃i
)
+G(G)| ≤ β|G(G)|,

where the so-called forcing term β itself can depend
on |G(G)|. Far from the minimum – when the relative gra-
dient is large – the tolerance is also large, and the CG iter-
ations are terminated early to prevent over-solving. As the
minimum is approached, the norm of the gradient decreases,
thereby enforcing an increasingly more accurate solution of
the Newton system Eq. (16). The criterion above is often able
to significantly reduce the overall number of CG iterations –
and thus the required number of incremental forward/adjoint
solves – while still maintaining fast local convergence. When
β is taken as the order of square root of the gradient, the inex-
act Newton method retains superlinear convergence (Eisen-
stat and Walker, 1996).
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It is critical that the total number of CG iterations be
as small as possible, since as mentioned above, each itera-
tion requires a pair of forward/adjoint incremental problem
solves. Despite the reduction in overall number of CG iter-
ations provided by inexact solution of the Newton step, the
number can still be large when a good preconditioner is not
used. An effective preconditioner is simply the inverse of the
regularization operator, which amounts to a Laplacian solve
on the basal surface. This is because the Hessian of the data
misfit operator, like many ill-posed infinite-dimensional in-
verse operators, has eigenvalues that decay to zero; precon-
ditioning by an inverse Laplacian simply increases the rate
of decay. Thus the resulting preconditioned Hessian behaves
like a compact perturbation of the identity with smooth dom-
inant eigenfunctions, for which CG converges rapidly and in
a number of iterations that is independent of the mesh size;
see, for example, Isaac et al. (2015). This is the precondi-
tioner we use in the numerical examples below.

Once a descent direction is computed by inexact solution
of the Newton step equation (Eq. 16), we must guarantee that
sufficient decrease in J is obtained in that direction so that
convergence of the iterations can be assured. This is achieved
by a line search that finds a step size α satisfying the so-called
Armijo condition (Nocedal and Wright, 2006), which has the
attractive property that it requires only cost functional eval-
uations and not gradient information. The Newton iterations
are repeated until the norm of the gradient of J is sufficiently
small. The inexact Newton method is summarized in Algo-
rithm 1, in which we use µ= 0.5 and ν= 10−4 for the line
search.

Algorithm 1 ADJOINT-BASED INEXACT NEWTON

Initialize/define variables G1, α, µ, ν, εtol
for k= 1, . . . do
(uk , pk , θk)← solve the forward equation with Gk
(vk , qk , λk)← solve the adjoint equation with (uk , θk)
Gk← compute the discrete gradient
if ||Gk ||<εtol then

converged
end if
Perform preconditioned inexact CG iterations for solving
Hk G̃k =−Gk to compute G̃k (each iteration requires solu-
tion of a pair of incremental forward/adjoint problems)
α← 1, descent= 0
while descent= 0 do
Gk+1←Gk +α G̃k
Solve the forward equation with Gk+1
if J (Gk+1)≤J (Gk)+ να〈Gk , G̃k〉0b then

descent= 1
else
α←µα

end if
end while

end for

4 Discretization

In this section, we describe the discretization of the forward
and the inverse problems and discuss a stabilization tech-
nique required to avoid oscillations for advection-dominated
problems. We compare two approaches for computing the
gradient of the cost functional, namely the OTD and the DTO
approaches.

4.1 Discretization of the forward problem and
streamline upwind Petrov–Galerkin (SUPG)
stabilization

For advection-dominated problems, the standard Galerkin fi-
nite element method applied to the energy equation (Eq. 3)
can result in strongly oscillatory solutions, unless the mesh
size is less than 2K/(ρc|u|), which results in a smaller crit-
ical mesh size as the Peclet number increases. To avoid this
onerous mesh size restriction for high Peclet flows, we dis-
cretize Eq. (3) with a consistent stabilization method, the
SUPG method (Brooks and Hughes, 1982), which suppresses
oscillations on coarser meshes. The SUPG method adds a
stabilization term to the standard Galerkin weak form. This
term involves the element residual and thus vanishes at the
exact solution, preserving the correct solution of the energy
equation in the limit of infinitesimal mesh size.

We use quadratic elements for temperature, and the
Taylor–Hood element pair for velocity and pressure
(quadratic elements for velocity and linear elements for pres-
sure). We let �′={�e} be a family of quadrilateral ele-
ments of �, denoted by Q1(�e) bilinear or trilinear func-
tions (in R2 and R3, respectively) and byQ2(�e) biquadratic
or triquadratic functions (in R2 and R3, respectively) defined
on �e. The discretized spaces are then given by

Uh =
{
uh ∈ U : uh|�e ∈Q2(�e)

d
∀�e ∈�

′

}
,

Ph =
{
ph ∈ P : P h|�e ∈Q1 (�e) ∀�e ∈�

′

}
,

T h =
{
θh ∈ T : θh|�e ∈Q2 (�e) ∀�e ∈�

′

}
,

T h0 =
{
λ̂h ∈ T0 : λ̂

h
|�e ∈Q2 (�e) ∀�e ∈�

′

}
,

Qh =
{
Gh ∈Q :Gh|�e ∈Q1 (�e) ∀�e ∈�

′

}
. (35)

The SUPG-stabilized discretization of Eq. (11) is thus as
follows: find (uh, ph, θh)∈Uh×Ph× T h such that

as

(
uh,ph,θh; v̂h, q̂h, λ̂h

)
= 〈ρg, v̂h〉�+〈G

h, λ̂h〉0b (36)

for all (v̂h, q̂h, λ̂h)∈Uh×Ph× T h0 , where
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as

(
uh,ph,θh; v̂h, q̂h, λ̂h

)
= a

(
uh,ph,θh; v̂h, q̂h, λ̂h

)
+

∑
e

〈τeρcu
h
· ∇λ̂h, Rθ 〉�e , (37)

with the residualRθ of the forward energy equation in Eq. (8)
given by

Rθ

(
uh,θh

)
:= ρcuh · ∇θh−K1θh− η

(
uh,θh

)
ε̇uh : ε̇uh . (38)

As can be seen in Eq. (37), the test function for the energy
equation residual is a multiple of uh · ∇ λ̂h and, in particular,
depends on uh. The stabilization factor τe ≥ 0 controls the
weight of the stabilization term and influences the quality
of the discrete solution. Often, by analogy with the optimal
one-dimensional choice, τe= (coth(Pe)− 1/Pe)h/(2ρc|u|),
where h is the element diameter in the direction of the ad-
vective velocity u, and Pe= ρc|u|h/2K is the local Peclet
number, which determines whether the problem is locally
convection dominated or diffusion dominated (Brooks and
Hughes, 1982). The introduction of this stabilization term
makes Eq. (36) a Petrov–Galerkin discretization (Brooks and
Hughes, 1982), which has consequences for the computation
of the derivatives of J (G) as defined in Eq. (13), which is
the subject of the next section.

4.2 Optimize-then-discretize versus
discretize-then-optimize

The numerical solution of the inverse problem requires the
computation of gradients of J with respect to G. These gra-
dients are computed using an adjoint system of equations,
and there are two approaches: the OTD and the DTO ap-
proach. In OTD, one derives the adjoint equations at the
infinite-dimensional (i.e., the PDE) level and then discretizes
both the forward system Eqs. (6)–(10) and the adjoint sys-
tem Eqs. (19)–(23) independently. Note that the adjoint en-
ergy equation (Eq. 21) is also an advection–diffusion equa-
tion, but with advection velocity −u. As a consequence, one
would then use SUPG stabilization for the forward and ad-
joint energy equations. In DTO, the forward problem and
the cost functional J (·) are discretized first, resulting in a
finite-dimensional optimization problem. Then, for this dis-
cretized optimization problem, gradients are computed us-
ing a finite-dimensional Lagrangian function, resulting in a
finite-dimensional system of adjoint equations. For more de-
tails, we refer the reader to Gunzburger (2003) and Hinze
et al. (2009).

For standard Galerkin discretizations, OTD and DTO usu-
ally coincide, i.e., they result in exactly the same finite-
dimensional gradient. However, the operations of optimiza-
tion and discretization do not commute when the forward
problem is discretized by SUPG. As SUPG is used to sta-
bilize the adjoint equation, the discrete gradient becomes in-
consistent with the discrete cost functional. This is because
the discrete adjoint of SUPG stabilization for the forward

equation is not equivalent to SUPG stabilization of the ad-
joint equation. The implication of an inconsistent gradient is
that the computed gradient may not actually lead to a direc-
tion of descent with respect to the discretized cost functional,
which can result in a failure in the line search and lack of
convergence. In the DTO approach, the SUPG stabilization
term in Eq. (37) produces a contribution in the adjoint equa-
tion that has a stabilizing effect. However, this contribution
is not a weighted residual of the continuous adjoint energy
equation, which can degrade the convergence of the discrete
adjoint temperature to the continuous adjoint temperature
(Collis and Heinkenschloss, 2002). However, the resulting
gradient is consistent with the discrete cost functional, and
therefore convergence is guaranteed with a Gauss–Newton
method and an appropriate line search.

Both DTO and OTD approaches have advantages and dis-
advantages, and the preference for one over the other depends
on the circumstances of the problem at hand (Gunzburger,
2003). For sufficiently smooth problems, the differences be-
tween OTD and DTO diminish as the mesh size is reduced,
and the approaches are equivalent in the limit. In the numeri-
cal results of the next section, we choose DTO so that we can
be assured a direction of descent without having to refine the
mesh beyond what is necessary for accurate approximation
of the forward, adjoint, and parameter fields. The resulting
expressions for the discrete gradient and Hessian constructed
via the DTO approach are specific approximations of the ex-
pressions for the continuous gradient and Hessian presented
in the previous section, and they will converge to those ex-
pressions as the mesh is refined. The infinite-dimensional ex-
pressions provided in the previous section provide useful in-
tuition on the nature of the gradient and Hessian action (for
example, the resemblance of the incremental forward and
adjoint operators to the forward and adjoint operators, the
fourth-order anisotropy of the effective viscosity in the ad-
joint and incremental operators, and the role of the boundary
conditions).

5 Numerical results and discussion

In this section, we study properties of the inverse problem
to infer the unknown geothermal heat flux field from surface
velocity observations. In particular, we study the limits of our
ability to invert for the heat flux as a function of the length
scales of the heat flux and of the noise level in the velocity
observations.

We consider a two- and a three-dimensional ice slab,�, of
length L= 80 km and the surface elevation s given by

s(x)= (H −H0)cos
(πx

2L

)
+H0, (39)

where x ∈ [0, L], H = 2 km is the maximum ice thickness,
and H0= 0.1 km is the ice thickness at the outflow bound-
ary 0o. The coordinate system and the ice slab domain for
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Figure 1. Coordinate system and cross section through a three-
dimensional slab of ice, as used in the computational experiments
(exaggerated in height for visualization).

the two-dimensional problem are shown in Fig. 1; the three-
dimensional geometry is an extrusion in the y direction of
this geometry.

In all model problems, we assume that the surface temper-
ature increases as the elevation decreases as follows:

θs(x)= θ0+ a(H − s(x)), (40)

where θ0=−50 ◦C is the temperature at x= 0, and a is the
lapse rate, taken to be a= 6.5 ◦C km−1.

The boundary conditions are as follows.

– On the top surface, 0t, we assume zero traction for
the velocity and the surface temperature θs defined in
Eq. (40), i.e.,

σ un= 0, θ = θs.

– On the bottom surface 0b, we assume that the ice is
frozen to the bedrock, i.e., we apply a no sliding con-
dition, and assume a geothermal heat flux condition for
the temperature, i.e.,

u= 0, K∇θ ·n=G.

– On the outflow boundary, 0o, we ignore the atmospheric
stress (i.e., the atmospheric pressure and wind stress),
which is small compared to the typical stresses in an
ice sheet, and thus impose a traction-free condition; the
surface temperature θs is as defined in Eq. (40), i.e.,

σ un= 0, θ = θs.

– We assume that 0i is an ice divide, i.e., there is no in-
flow, no shear stress and no heat flux, i.e.,

u ·n= 0, T σ un= 0, K∇θ ·n= 0.

– In addition, for the three-dimensional problem, we im-
pose periodic boundary conditions on the fore and aft
boundaries, i.e.,

u|0fore = u|0aft , σ un|0fore = σ un|0aft ,

θ |0fore = θ |0aft , K∇θ ·n|0fore =K∇θ ·n|0aft .

Table 2. Parameters and constants. Note that we choose A0 and Q
for the case that the temperature of the ice is below −10 ◦C, as the
solutions are mostly within this range.

Symbol Parameter Value SI unit

n Glen’s flow law exponent 3 –
A0 pre-exponential constant 3.985× 10−13 Pa−3 s−1

Q activation energy 6× 104 J(mol)−1

R universal gas constant 8.314 J(mol K)−1

g gravitational acceleration 9.81 m s−2

c heat capacity of ice 2009 J(kg K)−1

K thermal conductivity 2.10 W(m K)−1

ρ density 910 kg m−3

The values for the physical constants used in the numerical
experiments are taken from Greve and Blatter (2009) and are
shown in Table 2.

For all numerical experiments, we extract surface veloc-
ities at points from forward solution fields with specified
“truth” geothermal heat flux field as synthetic observations,
and add random Gaussian noise to lessen the “inverse crime”,
which occurs when the same numerical method is used to
both synthesize the observations and drive the inverse solu-
tion (e.g., Kaipio and Somersalo, 2005). We specify the noise
level through the signal-to-noise ratio (SNR), which is de-
fined as the ratio between the average surface velocity 〈u〉
of Nobs observation points and the standard deviation of the
added noise, σnoise, i.e.,

SNR=
〈u〉

σnoise
, with 〈u〉 =

√√√√ 1
Nobs

Nobs∑
k=1
|uk|

2. (41)

We choose a regularization parameter that approximately sat-
isfies Morozov’s discrepancy principle (Vogel, 2002); i.e.,
we find a regularization parameter such that 〈uγ −uobs

〉≈ δ,
where δ is the noise level and uγ is the surface velocity at the
observations points corresponding to the inferred geothermal
heat flux for a regularization parameter γ .

5.1 Two-dimensional model problem

First, we consider inversion for a geothermal heat flux in a
two-dimensional problem. We discretize the domain, �, into
quadrilaterals (Fig. 2) and employ biquadratic elements for
the velocity components, bilinear elements for pressure, and
biquadratic elements for temperature. Linear elements are
used for the unknown geothermal heat flux G defined on 0b,
unless otherwise specified. For the 40× 4 element discretiza-
tion shown in Fig. 2, the combined number of unknowns for
the velocity, pressure, and temperature fields is 2392 and for
the geothermal heat flux it is 41. We have experimented with
finer uniform and nonuniform meshes and obtained similar
result; hence unless otherwise specified the results presented
in this section are based on the mesh shown in Fig. 2. Unless
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Figure 2. Two-dimensional mesh (exaggerated in height for visual-
ization).

specified otherwise, we use 50 uniformly distributed obser-
vation points on the top surface.

5.1.1 Inversion for heat flux containing long- and
short-wavelength variations

We first study inversion with a “truth” geothermal heat flux
defined by

G(x)=
1

20
+

1
20

exp

(
−
(x−L/2)2

2(L/10)2

)
+

1
100

sin
(

20πx
L

)
. (42)

Here, the second and third terms contribute a long-
wavelength and a short-wavelength variation to the geother-
mal heat flux, respectively; the resulting “truth” heat flux is
visualized in Fig. 4b. The Gauss–Newton algorithm termi-
nates after eight Gauss–Newton iterations (requiring a total
of 105 CG iterations), when a decrease in the norm of the
gradient by a factor of 105 was achieved.

In Fig. 3, we show the forward solution (temperature and
velocity fields) obtained by solving Eqs. (6)–(10) with the
geothermal heat flux given by Eq. (42). This figure shows
that the ice is in a cold state, i.e., the temperature is below the
pressure melting point. We note that a temperature boundary
layer is formed at the base of the ice corresponding to the
accumulation zone due to the flow of cold ice from the sur-
face and due to the advection dominating the diffusion. As
the warmer ice close to the base flows toward the surface in
the ablation zone, another temperature boundary layer forms
at the surface at the right part of the ablation zone.

Figure 4a shows the synthetic pointwise velocity observa-
tions, obtained by extracting the surface velocities shown in
Fig. 3 at the observation points, followed by adding inde-
pendent noise corresponding to SNR= 20 to each observa-
tion. The reconstruction of the geothermal heat flux and the
corresponding recovered velocity fields are shown in Fig. 4a
and b, respectively. Figure 4a illustrates that inversion is able
to fit the data to within the noise. However, while the long-
wavelength component of the geothermal heat flux is well
recovered, the short-wavelength variations cannot be recon-
structed. This can be explained by the fact that the sensitiv-
ity of the surface velocity to the short-wavelength variations

Figure 3. Temperature and velocity found by solving the forward
problem with geothermal heat flux given in Eq. (42). The color
visualizes the temperature (in ◦C) and the arrows show the corre-
sponding velocity field.

Figure 4. Reconstruction of geothermal heat flux G in two-
dimensional model problem with SNR= 20. (a) Surface veloc-
ity observations (red dots show horizontal component; red squares
vertical component) and reconstructed velocities (black solid line
shows horizontal component; black dashed line shows vertical com-
ponent); (b) “truth” and reconstructed geothermal heat flux (the
dashed line shows the “truth” geothermal heat flux defined in
Eq. (42); the solid line shows the reconstructed geothermal heat
flux).

inG is low due to the smoothing property of the Stokes oper-
ator. These low sensitivities are overwhelmed by the noise in
the data, making the reconstruction of the short-wavelength
component ofG impossible. Taken together, these results re-
inforce the ill-posedness of the inverse problem.
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Figure 5. Reconstructions of geothermal heat flux with different noise levels and different wavelength variations for the two-dimensional

model problem. In (a), (b) and (c) we display synthetic observations (red circles for horizontal component and red squares for vertical

component; the data correspond to SNR = 20) computed from the “truth” heat fluxes Gtrue with L
w

= 80, L
w

= 40, and L
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= 20 shown

as red dashed lines in (d), (e) and (f), respectively. Also shown in (a), (b) and (c) are the velocity components (solid and dashed black lines)

corresponding to the reconstructed heat fluxes shown as black solid lines in (d), (e) and (f). In (d), (e) and (f) we additionally show the

reconstruction of the geothermal heat fluxes from surface velocity data with SNR = 100 (blue solid lines).
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Figure 5. Reconstructions of geothermal heat flux with different noise levels and different wavelength variations for the two-dimensional
model problem. In (a)–(c) we display synthetic observations (red circles for horizontal component and red squares for vertical component; the
data correspond to SNR= 20) computed from the “truth” heat fluxes Gtrue with Lw= 80, Lw= 40, and Lw= 20 shown as red dashed lines
in (d)–(f), respectively. Also shown in (a)–(c) are the velocity components (solid and dashed black lines) corresponding to the reconstructed
heat fluxes shown as black solid lines in (d)–(f). In (d)–(f) we additionally show the reconstruction of the geothermal heat fluxes from surface
velocity data with SNR= 100 (blue solid lines).

5.1.2 Inversion for different SNR and different
wavelength variation in the geothermal heat flux

We continue with a systematic study of the consequence of
the wavelength variation of the geothermal heat flux and of
the SNR on the reconstruction. For this study, we consider
different wavelengths of variations in the “truth” geothermal
heat flux

G(x)=
3

50
−

2
50

sin
(

2πx
Lw

)
, (43)

where Lw is taken as 80, 40, or 20 km. As before, we solve
the forward problem with the true geothermal heat flux field
Eq. (43) for the different wavelengths. Then we add noise
with a given SNR to the resulting point velocity observa-
tions and use these synthetic observations to reconstruct the
geothermal heat flux field.

In Fig. 5, we show inversion results for different wave-
length variations and for different noise levels. To assess the
reconstruction quantitatively, in Table 3 we report on the rel-
ative error between the “truth” and reconstructed geothermal
flux fields for various wavelengths variations and noise lev-
els. This relative error is computed as follows.

e(G)=
|G−Gtrue|L2

|G0−Gtrue|L2

, (44)

Table 3. The relative error e(G), computed using Eq. (44), between
the “truth” Eq. (43) and the reconstructed geothermal flux for wave-
length variations Lw= 80, 40, and 20 km and for SNR= 100, 20,
and 10.

Lw SNR

100 20 10

80 0.038 0.136 0.266
40 0.136 0.570 0.938
20 0.528 0.999 1.002

where G0= 0.06 W m−2 is the mean of the “truth” geother-
mal heat fluxGtrue. Based on the results summarized in Fig. 5
and Table 3, we make the following observations:

1. For fixed wavelength, the reconstructed geothermal heat
flux G approaches Gtrue as the noise level decreases.

2. For fixed noise level, shorter-wavelength variations of
the geothermal heat flux are more difficult to recon-
struct.

3. For short wavelength (e.g., Lw= 20 km, see Fig. 5f)
and small noise (e.g., SNR= 100), the wave crests and
valleys of the truth heat flux are recovered, but the
magnitude of the reconstruction is smaller than of the
“truth” geothermal heat flux. For the case with larger
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noise (e.g., SNR= 20), the reconstruction does not de-
tect the crests and valleys, although the corresponding
surface velocity still matches the observations within
the noise (see the black curve in Fig. 5f). The results
in Table 3 confirm these findings, in particular we note
that the relative errors for the short wavelength and large
noise (i.e., Lw= 20 km with SNR= 20 or SNR= 10) is
roughly 100 %, i.e., the reconstruction fails to capture
the variations of the “truth” geothermal heat flux.

5.1.3 Influence of the number of observations and the
mesh resolution

We consider 10, 25, 50, and 100 uniformly distributed ob-
servation points and two different meshes, namely a mesh
consisting of 40× 4 elements with linear elements for the
geothermal heat flux and a mesh consisting of 80× 4 ele-
ments with quadratic finite elements for the unknown heat
flux. The “truth” geothermal heat flux field is given by
Eq. (43) and the noise level in the observations is SNR= 20.
In Fig. 6a, we show the “truth” and the reconstructed geother-
mal heat flux fields for 10, 25, 50, and 100 observation points.
This figure shows that the reconstruction improves signifi-
cantly as the number of observation points increases.

To study the influence of the number of observations and
of the mesh resolution on the ill-posedness of the inversion,
we study the properties of the Hessian matrix of the data mis-
fit component of J (i.e., the Hessian of the first term in the
cost function defined by Eq. 13). To explain why the Hes-
sian of the data misfit provides insight into the ill-posedness
of an inverse problem, consider a Taylor expansion of the
data misfit term in J about the solution of the inverse prob-
lem Eq. (13). When the inverse solution is able to fit the data
to within the noise and the noise is small, the gradient of
the data misfit component of J is negligible, and the local
behavior of J is governed by the Hessian term. Perturba-
tions of the geothermal heat flux in directions associated with
large eigenvalues of the data misfit Hessian result in a large
change of the cost functional and are thus well constrained
by the data misfit term. However, the cost functional is not
sensitive to perturbations in parameter directions associated
with small eigenvalues of the Hessian and, as a consequence,
these directions are only weakly (or not at all) constrained.
The more such directions exist, the more ill-posed the in-
verse problem is. Thus, the spectrum of the Hessian provides
information on which directions in the parameter space can
be reliably recovered (namely, those corresponding to large
eigenvalues) and which directions are poorly or not at all
recoverable (those corresponding to small or zero eigenval-
ues). The Hessian also plays an analogous role in quantifying
uncertainty in the inversion in the framework of Bayesian
inference (Tarantola, 2005). Here, the inverse of the Hes-
sian provides an approximation to the covariance matrix of
the posterior probability density function, which is regarded
as the solution of an appropriately formulated Bayesian in-

Figure 6. Shown in (a) are the “truth” (red dashed line) and the re-
constructed geothermal heat flux fields for 10 (magenta), 25 (blue),
50 (black), and 100 (cyan) uniformly distributed observation points.
The corresponding relative error computed using Eq. (44) are 0.425,
0.374, 0.243, and 0.195. These reconstructions are computed using
the finer discretization, which uses 80 quadratic elements for the
heat flux; the reconstructions obtained with the coarser discretiza-
tion are similar. In (b), the corresponding (normalized) spectrum of
the data misfit Hessian for the two different discretizations (solid
lines correspond to the 40× 4 element mesh with a linear basis for
the heat flux, and dashed lines correspond to the 80× 4 element
mesh with a quadratic basis for the heat flux) and different numbers
of observation points are shown. We note that the cyan solid line
covers the black solid line as the recoverable information is limited
by the mesh resolution.

verse problem. An approximation of the inverse Hessian can
be computed even for large-scale inverse problems by ex-
ploiting low-rank properties that are typical for many ill-
posed inverse problems (Flath et al., 2011; Petra et al., 2014;
Kalmikov and Heimbach, 2014).

Since we are using a Newton method to solve the inverse
problem, the Hessian matrix is available (or more correctly,
its action in a particular direction, as presented in Sect. 3, is
available, and this is all that is required to extract the spec-
trum using a Lanczos method). In the following, we use the
spectrum of the data misfit component of the Hessian to char-
acterize how the ill-posedness of the inverse problem varies
with the number of observations and the mesh resolution. In
Fig. 6b, the spectra of the data misfit Hessians for different
numbers of observations and the two different mesh resolu-
tions are shown. If we were to include the regularization in
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the Hessians (i.e., consider the full Hessian of the cost func-
tional J , not only the data misfit term), these spectra would
not collapse to zero but would remain bounded from below.
Figure 6b shows that the spectra of the data misfit Hessians
decay rapidly, in particular for the cases with a small number
of observation points. This illustrates the severe ill-posedness
of the geothermal heat flux inversion problem considered
here. Note that since the observed data are the horizontal
and vertical components of the velocity fields at points on
the top surface, the rank of the data misfit Hessian cannot
be larger than twice the number of the observations points;
this can be seen, for instance, in the spectrum for the case
with 10 observation points. As the number of observation
points increases, the number of nonzero eigenvalues of the
data misfit Hessian increases. However, the largest eigen-
values, which correspond to the parameter directions most
strongly constrained by the data, do not change as the number
of observations increases. Thus, these parameter directions
are already well constrained by a small number of observa-
tions. Also, note that the finer discretization of the model and
the heat flux becomes more important as more observations
are available. This is because the additional information ob-
tained from more observations can be used to better inform
the geothermal heat flux only when the finite element dis-
cretization of that heat flux and of the model equations has
sufficient degrees of freedom to capture that information.

5.2 Three-dimensional model problem

Next, we consider a three-dimensional model problem with
domain� of length and widthL= 80 km and height given by
Eq. (39). A cross section of the geometry is shown in Fig. 1.
We discretize the domain, �, using 20× 10× 4 hexahedra.
The combined number of degrees of freedom for velocity,
pressure, and temperature is 32 151 and for the geothermal
heat flux it is 231. In this numerical experiment, we aim to
reconstruct the spatially varying geothermal heat flux

G(x,y)=
1

20
+

1
20

exp
(
−
(y−L/2)2

2(L/10)2

)
, (45)

where (x, y)∈ [0, L]× [0, L]. We use 20× 20 uniformly
distributed pointwise velocity observations at the top sur-
face and add noise to the synthetic observations such that
SNR= 20. The algorithm converged after six Gauss–Newton
iterations (involving a total of 42 CG iterations), where we
again terminated the iterations as soon as the norm of the
gradient was decreased by a factor of 105.

The top row in Fig. 7 shows the velocity observations on
the top surface and the surface velocities obtained with the
reconstructed geothermal heat flux. The bottom row shows
the “truth” and the reconstructed geothermal heat flux fields.
We note that the higher geothermal heat flux in the center
warms up the ice, results in lower viscosity and, thus, faster
ice flow. Also note that the inverse solution is able to fit the
reconstructed velocity to the observations to within the noise.
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Figure 7. Reconstruction of geothermal heat flux G for the three-dimensional model problem. Shown in (a) are observations of the surface

velocity (arrows and contour lines) with SNR = 20, and (b) shows the surface velocity corresponding to the reconstructed geothermal heat

flux. In (c), we show the “truth” geothermal heat flux defined in (45), and (d) shows the reconstructed heat flux.
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Figure 7. Reconstruction of geothermal heat flux G for the three-
dimensional model problem. Shown in (a) are observations of the
surface velocity (arrows and contour lines) with SNR= 20, and
(b) shows the surface velocity corresponding to the reconstructed
geothermal heat flux. In (c), we show the “truth” geothermal heat
flux defined in Eq. (45), and (d) shows the reconstructed heat flux.

The geothermal heat flux in the upstream part is well recov-
ered, but the reconstruction deteriorates downstream. We at-
tribute this phenomenon to the fact that the heating effect
mostly affects the downstream surface flow and, hence, the
larger heat flux near the outflow boundary has little effect on
the ice flow velocity on the surface above. In Fig. 8, we show
the temperature field based on the reconstructed geothermal
heat flux. We note that the ice is cold, with a temperature
field comparable to the two-dimensional model problem on
each slice (Fig. 8a). In Fig. 8b, we show the temperature at
the base 0b of the ice. Note that the temperature is higher in
the center due to the nonuniform geothermal heat flux, but it
is below the melting point everywhere in 0b.

6 Fully coupled versus one-way coupled approaches in
multiphysics inversion

Multiphysics forward problems are commonly solved using
so-called “one-way coupled” or “operator-split” approaches.
For example, for a coupled problem with two physics com-
ponents, the first physics subproblem would be solved as-
suming the state variables of the second physics subproblem
remain fixed, after which the second physics subproblem is
solved using the just-computed first physics state variables.
One then iterates until convergence, which is guaranteed only
if the spectral radius of a certain iteration matrix is less than
unity. If the iteration converges, it converges to the correct
solution. Such one-way coupled solvers have been used suc-
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Figure 8. The temperature field (in ◦C) corresponding to the recon-
structed geothermal heat flux G for the three-dimensional model
problem. Shown in (a) are slices through the domain, and (b) shows
the temperature at the base 0b.

cessfully for ice flow forward problems (Dahl-Jensen, 1989;
Hvidberg, 1996; Price et al., 2007; Zwinger et al., 2007;
Zhang et al., 2011), in which case the solver iterates back
and forth between Stokes and energy equation solves, pass-
ing velocities from the former to the latter, and temperatures
from the latter to the former. The convergence rate is only lin-
ear, as opposed to quadratic for a fully coupled Newton for-
ward solver, but one might still prefer the one-way coupled
approach due to its ability to capitalize on existing single-
physics solvers and codes, its avoidance of computing Ja-
cobians of coupling terms, and the difficulties of designing
preconditioners for the fully coupled Jacobian. Therefore, it
is tempting to use the same operator from a one-way coupled
forward solver to also solve the adjoint problem during inver-
sion. However, this also leads to an incorrect adjoint opera-
tor, since it discards some of the coupling blocks within the
operator. This in turn leads to an incorrect gradient, which
can lead to inaccurate or incorrect solutions of the inverse
problem, depending on how strong the coupling terms in the
Jacobian of the fully coupled problem are. In this section we
illustrate this issue using the multiphysics inverse problem
given by the coupled system consisting of the Stokes equa-
tions (Eqs. 1 and 2) and the energy equation (Eq. 3). In the
rest of this section, to simplify the notation, we drop the h su-
perscripts on discrete variables.

In the following discussion, we express the forward prob-
lem Eqs. (6)–(10) in terms of the residuals of the discretized
equations, as follows:

ru(u,p,θ)= 0, rp(u)= 0, rθ (u,θ)= 0,

where u, p, and θ denote the discretized velocity, pressure,
and temperature, respectively, and ru, rp, and rθ are the dis-
crete residuals of the momentum, mass, and energy equa-
tions, respectively. The discrete adjoint system correspond-
ing to Eqs. (19)–(23) can be written as BTuu Bup BTθu

BTup 0 0
BTuθ 0 BTθθ

 v

q

λ

=
 f v

0
0

 , (46)

where v, q, and λ denote the discretized adjoint veloc-
ity, pressure, and temperature, respectively, and f v is
the right-hand side of the discrete adjoint momentum
equation corresponding to the misfit term in Eq. (22).
Here, Buu= ∂ru/∂u, Bup = ∂ru/∂p, Buθ = ∂ru/∂θ ,
Bθu= ∂rθ/∂u, and Bθθ = ∂rθ/∂θ . We note that the sub-
matrix [BTuu, Bup; BTup, 0] is the transpose of the linearized
discrete Stokes operator (which is in fact symmetric), and
Buθ and Bθu are Jacobians of the coupling terms between
the Stokes and the energy equations. In particular, Buθ is
the term corresponding to the derivative of the momentum
residual ru with respect to the temperature, and Bθu is
the term corresponding to the derivative of the energy
residual rθ with respect to the velocity. We call the gradients
obtained when neglecting either of these coupling matrices
in the adjoint systems “one-way coupled gradients” and
denote these by Gowc. Next, we study the consequences of
the use of one-way coupled gradients on the inversion.

As an illustration of neglecting Jacobians of coupling
terms in the adjoint equation, we neglect BTθu in Eq. (46).
Note that we retain BTuθ in the adjoint operator. This allows us
to uncouple the adjoint Stokes equation from the adjoint en-
ergy equation, leading to a block triangular system. This can
be solved by first solving for the adjoint velocity and pres-
sure and then computing the adjoint temperature using the
just-computed adjoint velocity. Because we have neglected a
block within the adjoint operator, we obtain an incorrect ad-
joint solution, which then leads to an incorrect gradient. How
incorrect the gradient is depends on the “magnitude” of Bθu.
To study the implications of using the resulting one-way cou-
pled gradient Gowc in an inverse problem, we compare the
inverse solution based on the one-way coupled gradient with
the solution obtained with the exact gradient Gexact. We sum-
marize our findings in Fig. 9. Since the one-way coupled gra-
dient is not the correct gradient of the cost functionalJ , a de-
scent direction is not guaranteed, and as a result the Gauss–
Newton method for solving the inverse problem Eq. (13) ter-
minates when the search direction based on the one-way cou-
pled gradient is not a descent direction for J . Thus the so-
lution of the inverse problem based on the one-way coupled
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Figure 9. Reconstructions of the geothermal heat flux based on the one-way coupled gradient obtained when the coupling matrix BTθu is
neglected in the adjoint system for observations with SNR= 20. Shown in (a) is the “truth” geothermal heat flux Gtrue (red dashed line),
the reconstructions G based on the exact gradient (blue dash-dot line), and based on the one-way coupled gradient (black solid line). In (b),
the evolution of the norm of the exact gradient is shown for two different solutions of the minimization problem, one using the exact (blue
dashed) and one using the one-way coupled (black solid) gradient. We show in (c) the cosine of the angle between the one-way coupled
gradient and the exact gradient in each iteration (black solid line; see Eq. 47) and the cosine of the angle between the search direction and
the steepest descent direction (black dashed line: based on the one-way coupled gradient; blue dashed line: based on the exact gradient; see
Eq. 48). When the latter value becomes negative, the search direction is not a descent direction and the algorithm terminates as the line search
fails.

gradient can differ from the correct solution not only because
the incorrect optimality condition is being satisfied but also
because the search direction can terminate prematurely due
to inconsistency of the gradient and cost functional. How-
ever, despite the fact that we attempt to solve the wrong op-
timality conditions (i.e., vanishing of the one-way coupled
gradient rather than the exact gradient) and despite the pre-
mature termination, one can still obtain a reasonable approx-
imation of the inverse solution. This is depicted in Fig. 9a,
which shows the inferred geothermal heat flux based both on
the exact gradient and on the one-way coupled gradient. As
can be seen, they are close to each other.

In Fig. 9b we show the convergence of the norm of the
gradient for two iterations, one corresponding to the correct
gradient and one corresponding to the one-way coupled gra-
dient. Note that the one-way coupled gradient iteration ter-
minates prematurely after 11 iterations. Figure 9c explores
why the one-way coupled iteration terminated early.

First, we plot the angle between the exact gradient Gexact
and the one-way coupled gradient Gowc, i.e,

cosφ1 =
〈Gexact,Gowc〉0b

|Gexact|L2 |Gowc|L2
. (47)

As can be seen, initially the one-way coupled gradient direc-
tion coincides with the exact gradient direction, but the angle
between them increases substantially in the later iterations.
Beyond this incorrectness, the Gauss–Newton search direc-
tion based on the one-way coupled gradient is not even a de-
scent direction for the cost function J , leading to the prema-
ture termination of the Gauss–Newton iterations. This is be-
cause the one-way coupled gradient is not consistent with the
contours ofJ (which are computed using the correct forward
model). Note that a search direction G̃ is a descent direction
only if its angle φ2 with respect to the negative gradient di-

rection −Gexact is less than π/2, i.e., cos(φ2)> 0 (Nocedal
and Wright, 2006, p. 21). The cosine of φ2 is thus given by

cosφ2 =
〈−Gexact, G̃〉0b

|Gexact|L2 |G̃|L2
, (48)

where G̃ is the Newton search direction. Figure 9c plots the
values of cosφ2. As can be seen, the line search with the
search direction based on the one-way coupled approach fails
at iteration 11, when cos(φ2)< 0. In other words, not only
is the computed search direction incorrect (relative to that
of a correct Gauss–Newton step), but it does not even point
downhill!

These results illustrate several important characteristics of
approximations made in inverse problems governed by mul-
tiphysics forward models. First, discarding the Jacobians of
coupling terms within the adjoint operator can result in sub-
stantially incorrect gradients. This could lead to incorrect so-
lution of the inverse problem due to the fact that the vanish-
ing of the gradient constitutes the first-order necessary con-
dition for solution of the inverse problem. It could also lead
to premature termination of the iterations due to the loss of
a descent direction stemming from inconsistency of the gra-
dient with the contours of the cost function. Second, despite
the incorrect gradient, it may still be possible to obtain a rea-
sonable solution to the inverse problem, particularly when
the discrepancy between exact and approximate gradients re-
mains small for a sufficient number of iterations to provide a
good approximate inverse solution.
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7 Conclusions

We have formulated an inverse problem for estimating the
uncertain geothermal heat flux at the base of an ice sheet
or glacier in a thermomechanically coupled nonlinear Stokes
model from surface velocity observations. Since the forward
problem involves an advection-dominated energy equation,
a SUPG stabilization was used to suppresses non-physical
oscillations in the temperature field. This required use of a
discretize-then-optimize approach to compute adjoint-based
gradients and Hessians. We advocated an inexact Newton
method to solve the discretized inverse problem. Using two-
and three-dimensional model problems, we studied the iden-
tifiability of the geothermal heat flux field on the basal
boundary. We found that the quality of the reconstruction de-
teriorates with shorter-wavelength variations of this heat flux
and with increasing noise in the observations. In particular, a
geothermal heat flux with a mean value of 0.06 W m−2 can be
reconstructed accurately from observations that contain 1 %
noise (SNR= 100) when the wavelength-to-ice-thickness ra-
tio is ∼20 and from observations that contain 5 % noise
(SNR= 20) for a wavelength-to-ice-thickness ratio of ∼ 40.
In addition, we studied the influence of the number of ob-
servations and the mesh resolution on the reconstruction and
found that the reconstruction improves substantially as the
number of observation points increases, provided the dis-
cretization is fine enough.

Moreover, we derived expressions for the gradient and the
Hessian of the cost functional for a fully thermomechanically
coupled Stokes forward model. We discussed problems that
can occur when the gradient is approximated by a so-called
one-way coupled approach, in which the two-way coupling
of Stokes and the energy equations is replaced by one-way
coupling, as is frequently done within forward solvers. The
results show that the inversion based on a one-way coupled
approach can fail to converge due to the inconsistency of the
gradient and the cost functional, leading to the loss of a de-
scent direction. Nevertheless, one might still obtain a reason-
able approximate inverse solution, particularly if important
features of the reconstructed solution emerge early in op-
timization iterations, before the iterations terminate prema-
turely.

We have used synthetic observations on idealized geome-
tries to probe the limits of invertibility for the geothermal
heat flux field. We have assumed that the ice is cold ev-
erywhere and thus enforced a no-slip boundary condition at
the base. In reality, the ice may reach the pressure melting
point at some basal locations. This requires a different set of
boundary conditions, which account for ice either below or at
the melting point. Solution of thermomechanically coupled
ice flow models with such variational inequality boundary
conditions is the subject of our current work.
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