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Abstract. The Greenland ice sheet (GrIS) has been the fo-

cus of climate studies due to its considerable impact on sea

level rise. Accurate estimates of surface mass fluxes would

contribute to understanding the cause of its recent changes

and would help to better estimate the past, current and fu-

ture contribution of the GrIS to sea level rise. Though the

estimates of the GrIS surface mass fluxes have improved sig-

nificantly over the last decade, there is still considerable dis-

parity between the results from different methodologies (e.g.,

Rae et al., 2012; Vernon et al., 2013). The data assimilation

approach can merge information from different methodolo-

gies in a consistent way to improve the GrIS surface mass

fluxes. In this study, an ensemble batch smoother data as-

similation approach was developed to assess the feasibility

of generating a reanalysis estimate of the GrIS surface mass

fluxes via integrating remotely sensed ice surface temper-

ature measurements with a regional climate model (a pri-

ori) estimate. The performance of the proposed methodol-

ogy for generating an improved posterior estimate was in-

vestigated within an observing system simulation experiment

(OSSE) framework using synthetically generated ice surface

temperature measurements. The results showed that assim-

ilation of ice surface temperature time series were able to

overcome uncertainties in near-surface meteorological forc-

ing variables that drive the GrIS surface processes. Our find-

ings show that the proposed methodology is able to gener-

ate posterior reanalysis estimates of the surface mass fluxes

that are in good agreement with the synthetic true estimates.

The results also showed that the proposed data assimilation

framework improves the root-mean-square error of the pos-

terior estimates of runoff, sublimation/evaporation, surface

condensation, and surface mass loss fluxes by 61, 64, 76, and

62 %, respectively, over the nominal a priori climate model

estimates.

1 Introduction and background

The Greenland ice sheet (GrIS) has recently experienced

thinning of the marginal ice (e.g., Straneo and Heimbach,

2013; Khan et al., 2014), thickening of its interior (e.g., Jo-

hannessen et al., 2005; Fettweis et al., 2007), acceleration

and increase of ice discharge from many of Greenland’s out-

let glaciers (e.g., Rignot et al., 2008; Wouters et al., 2013),

and enhanced surface melt (e.g., Tedesco et al., 2013; Ver-

non et al., 2013). The melting of the GrIS due to increased

temperature has the potential to affect deep ocean circula-

tion and sea level rise (Hanna et al., 2005; Fettweis et al.,

2007; Tedesco, 2007; Rahmstorf et al., 2015). Van Angelen

et al. (2012) and Fettweis et al. (2013) predict that meltwater
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runoff will be the dominant mass loss process in the future

due to the retreat of the tidewater glaciers above sea level;

a recent study showing that the dynamic mass loss was re-

duced from 58 % before 2005 to 32 % for the period between

2009 and 2012 (Enderlin et al., 2014).

Many studies (e.g., Van de Wal et al., 2012) have taken

advantage of in situ measurements to provide a direct point-

scale estimate of the surface mass balance (SMB, i.e., the dif-

ference between accumulation and ablation). However, with

these limited in situ measurements alone, large-scale map-

ping of the GrIS surface mass fluxes (i.e., precipitation, evap-

oration, sublimation, condensation, and runoff) is impossi-

ble. The availability of remote sensing data and/or products

has taken GrIS from a remote “data poor” region that is re-

liant mostly on sparse in situ measurements to a potentially

“data rich” environment. In this regard, a key research objec-

tive is to better understand how such data can be optimally

leveraged for quantitatively estimating the SMB and its asso-

ciated fluxes.

Surface remote sensing data and products (i.e., surface

or skin temperature, multi-frequency brightness temperature,

and albedo) have been used to characterize various aspects

of SMB such as snow melt, melt extent, melt duration, new

snow, and extreme melt events (e.g., Abdalati and Steffen,

1995; Tedesco et al., 2011; Box et al., 2012; Hall et al., 2013).

However, the relationship between surface remote sensing

data/products and surface mass fluxes are most often indi-

rect and implicit. For example, ice surface temperature (IST)

can be indicative of melt, but it fails to quantitatively estimate

the volume of meltwater produced. More importantly, other

surface mass fluxes such as evaporation, condensation, sub-

limation, and runoff cannot be directly quantified via remote

sensing. This makes the possibility of quantitatively charac-

terizing the surface mass fluxes from remote sensing retrieval

algorithms difficult if not impossible. It can therefore be ar-

gued that the information content of remotely sensed data

remains underutilized due to indirect and implicit links be-

tween the various data streams and surface mass fluxes.

Given the limitations of the observation-based methods,

numerical models offer an alternative mechanism to quan-

tify the GrIS surface mass fluxes. Several model-based ap-

proaches have been used to characterize the spatiotemporal

variability of the GrIS surface mass fluxes in both historical

and future contexts (e.g., Hanna et al., 2011, 2013; Box et

al., 2006; Fettweis et al., 2011; Ettema et al., 2009; Lewis

and Smith, 2009; Vernon et al., 2013; Franco et al., 2013).

Although the aforementioned methodologies have provided

the ability to estimate the GrIS SMB and related fluxes,

their estimates vary considerably, mainly due to the differ-

ent physics parameterizations in the models and simplify-

ing assumptions, the inherent uncertainty of each method,

error in model and input data, and the length of data records

(e.g., Rignot et al., 2011; Vernon et al., 2013; Smith et al.,

2015). Therefore, it is imperative to design techniques that

bridge the gap between different methods by merging rele-

vant data streams with a physical model with the aim of bet-

ter spatiotemporal characterization of the GrIS surface mass

fluxes. In this study, we provide an example of taking advan-

tage of information in the relevant data streams to provide a

better spatiotemporal characterization of the model outputs

(i.e., the GrIS surface mass fluxes). This can be done using

a data assimilation approach which attempts to merge model

estimates with measurements in an optimal way (Evensen,

2009).

2 Motivation and science questions

To date, to the best of the authors’ knowledge, there have

been no attempts at merging surface remote sensing data

with models using a data assimilation (DA) framework to

fully resolve and quantify estimates of the GrIS surface mass

fluxes. Data assimilation techniques have been heavily used

in hydrology to estimate soil moisture (e.g., Reichle et al.,

2002; Margulis et al., 2002; Al-Yaari et al., 2014), predict

snow water equivalent (e.g., Durand et al., 2008; De Lan-

noy et al., 2012; Girotto et al., 2014a; Zhang et al., 2014),

estimate runoff (e.g., Crow and Ryu, 2009; Franz et al.,

2014), improve estimates of radiative fluxes (e.g., Forman

and Margulis, 2010; Xu et al., 2011), and characterize snow-

pack properties and freeze–thaw state of the underlying soil

(Bateni et al., 2013, 2015). DA so far has been underutilized

in applications aimed at characterizing GrIS dynamics. Re-

cently, Goldberg and Heimbach (2013) and Morlighem et

al. (2013) used variational DA methods to characterize the

interior and basal properties of ice sheets and ice shelves.

Larour et al. (2014) assimilated surface altimetry data into

the reconstructions of transient ice flow dynamics to in-

fer basal friction and surface mass balance of the northeast

Greenland ice stream. However, the use of DA for estimating

GrIS SMB terms remains relatively unexplored. Assessing

the feasibility of such approaches in providing a mechanism

for improving quantitative estimates of SMB is the key mo-

tivation of this work.

This study utilizes an observing system simulation exper-

iment (OSSE) framework to assess the feasibility of the pro-

posed DA system. The OSSE framework uses synthetically

generated IST measurements consistent with a “true” real-

ization of SMB evolution. This study addresses the following

science questions: (1) can assimilation of IST measurements

overcome errors and uncertainties in the near-surface meteo-

rological forcing variables for snow/ice modeling? (2) Can a

DA framework be used to reduce the uncertainty and/or cor-

rect biases in a priori estimates of surface mass fluxes from a

regional climate model?

This paper is arranged as follows: Sect. 3 contains the de-

scription of the models and methods used in this work. The

experimental design is given in Sect. 4. The results and eval-

uation of the proposed methodology are discussed in Sect. 5.
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Finally, key conclusions and future research directions are

reported in Sect. 6.

3 Models and methods

3.1 Study domain

The study domain covers the entire GrIS, which is discretized

with a grid size of 25 km by 25 km to match the domain used

in the regional atmospheric model described below. The fo-

cus is on fully snow/ice-covered pixels. Figure 1 shows the

different GrIS mass balance zones based on a forward sim-

ulation for the year 2010. The ablation zone is defined as

the region of the GrIS where the annual surface mass bal-

ance is negative. The dry snow zone is defined as the region

where the mean annual temperature is less than−25 ◦C (Cuf-

fey and Paterson, 2010) and melt generally does not occur.

The area between the ablation zone and the dry snow zone

is considered the percolation zone where surface meltwater

percolates downward into the snow layers. It should be noted

that the digital elevation model over the ice sheet originates

from a high-resolution map generated by Bamber and Lay-

berry (2001). The elevation of the ice sheet increases from

almost 0 in the coastal regions up to about 3400 m at the sum-

mit.

3.2 Data

Surface temperature plays an important role in the coupled

GrIS surface energy and surface mass budget. It is the key

factor that regulates partitioning of net radiation into the sub-

surface snow/ice and sensible and latent heat fluxes. Sur-

face temperature also influences the generation of runoff, the

temperature profile evolution, and even basal melt (Hall et

al., 2013). Space-borne instruments can provide estimates of

IST. The retrieved IST is directly related to snow surface

emissivity (Hook et al., 2007). The emissivity of the snow

surface is a function of grain size and liquid water content,

both of which are under the influence of surface processes

(Hall et al., 2009). These facts support the idea that clear-

sky IST, of all remote sensing products available, may con-

tain the most information about physical processes that drive

the GrIS accumulation and mass loss. Therefore, this work

focuses on testing the feasibility of using products such as

Moderate Resolution Imaging Spectroradiometer (MODIS)

IST as an extra source of information to enhance the utility of

modeling techniques. The possibility of using additional re-

motely sensed data streams (e.g., passive microwave bright-

ness temperature and albedo) will be investigated in future

studies.

The Greenland ice surface temperature product (GrIS IST)

is available from the MODIS Terra satellite (http://

modis-snow-ice.gsfc.nasa.gov/?c=greenland) and provides

up to one (clear-sky) measurement per day at a native res-

olution of 1.5 km and an accuracy of ∼ 1–1.5 ◦K (Hall et al.,

Figure 1. The Greenland ice sheet mask (filled area), including the

ablation zone (blue), the percolation zone (dark green), and the dry

snow zone (bright green), based on an offline CROCUS simulation

for the year 2010. The contour lines show the topography of the ice

sheet with an interval of 500 m. The red square shows the location

of a sample pixel in the ablation zone (see Sect. 5.1).

2012). However, cloud contamination and occasional instru-

ment outages play an important role in the availability of the

MODIS IST measurements. These two factors along with

some other technical and quality considerations can reduce

the availability of the IST measurements to less than 10 high-

quality clear-sky measurements in some months (Hall et al.,

2012). In the context of the OSSE used in this work, synthetic

IST was generated based on the temporal resolution and ac-

quisition time of the actual GrIS IST product by perturbing

the modeled surface temperature with assumed measurement

error described below.

3.3 Regional climate model (RCM)

The a priori (or prior) estimate used in the DA framework

in this study is based on output from the regional climate

model Modèle Atmosphérique Régional (MAR; Gallée and

Schayes, 1994; Gallée and Duynkerke, 1997). The version

of the model used here (i.e., MARv2) has been applied ex-

tensively over the GrIS and is described in more detail in

previous studies (Lefebre et al., 2003; Fettweis et al., 2005).

This version has also been used to generate future projec-

tions for the ICE2SEA European project (Fettweis et al.,

www.the-cryosphere.net/10/103/2016/ The Cryosphere, 10, 103–120, 2016
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2013). For this study, MAR was used to generate hourly near-

surface meteorological outputs (e.g., temperature, pressure,

wind speed and direction, longwave and shortwave radiation,

precipitation, pressure, humidity) at a horizontal spatial reso-

lution of 25 km to force an offline snow/ice model. The ERA-

Interim reanalysis from the European Centre for Medium-

Range Weather Forecasts (ECMWF) was used to initialize

the MAR meteorological fields at the beginning of the sim-

ulation (1979) and to force the atmospheric lateral bound-

aries as well as the oceanic conditions (surface temperature

and sea ice extent) every 6 h over 1979–2010. MAR was

not reinitialized every day by the ECMWF reanalysis and

its results were not recalibrated after the simulation to bet-

ter compare with observations as in other approaches (e.g.,

Box et al., 2004, 2006). The reader is referred to Fettweis et

al. (2005, 2011) and Lefebre et al. (2003) for detailed infor-

mation on the MAR setup used here.

3.4 Surface mass/energy balance and snow physical

model

The key equations related to SMB are the water and energy

balance of the near-surface ice sheet. The bulk surface mass

balance for each model pixel (i.e., integrated over the top

∼ 10 m of the ice sheet) can be written as

SMB= P −E+C−R, (1)

where P is the surface precipitation, E is the surface evapo-

ration/sublimation, C includes both liquid and solid conden-

sation, and R is the meltwater runoff from the snow/ice pack.

Note that refreezing is implicitly included in the runoff term.

Evaporation, sublimation, condensation, and runoff are the

key variables that drive the surface mass loss (SML), while

precipitation is the key meteorological driver for GrIS sur-

face accumulation.

The temporal evolution of snow temperature in a vertical

snow column is constrained by the conservation of energy

equation, i.e., (Brun et al., 1989)

∂
(
ρcpT

)
∂t

=
∂2(κT )

∂z2
+ q, (2)

where ρ is the snow density, cp is the snow heat capacity,

T is the snow temperature at depth z and time t , κ is the

snow heat conductivity, and q represents a sink (melt) and

source (refreezing). It is worth noting that Eq. (2) is valid for

T < 273.15 K; any energy inputs that would raise the tem-

perature beyond freezing instead contribute directly to melt.

Equation (2) is subject to the surface energy balance as a

boundary condition, which is the key driver of the snowpack

energy budget:

R↓s (1−α)+R
↓

l −R
↑

l = Rn =QSH+QLH+QG, (3)

where R
↓
s is the downward shortwave radiation, α is the

(broadband) snow albedo, and R
↓

l and R
↑

l are the downward

and upward longwave radiation (all terms are positive val-

ues). Rn is the net radiation that is partitioned among the

surface sensible (QSH), latent (QLH), and surface (QG) heat

fluxes (into the snow). QSH and QLH are positive when di-

rected toward the atmosphere and QG is positive when di-

rected toward the snow/ice surface. The sensible/latent heat

fluxes represent the turbulent heat/vapor exchange between

the surface and overlaying air due to the temperature/water

vapor gradient between the surface and the reference level

(i.e., meteorological forcing variables). The ground heat flux

is driven by the temperature difference between the surface

temperature and subsurface layers and hence can have a sig-

nificant impact on the ice/snow melt and runoff. Based on

Eq. (3),R
↓
s ,R

↓

l , α and air temperature, specific humidity, and

wind speed (embedded in QSH and QLH) are the key meteo-

rological variables controlling the downward energy into the

snowpack (QG), which ultimately contributes to runoff (R).

The above coupled surface mass/energy balance repre-

sented by the CROCUS snow physical model was used in

this study to provide a prior estimate of the GrIS surface mass

fluxes that is consistent with the nominal forcings provided

by MAR. CROCUS is a 1-D energy balance model con-

sisting of a thermodynamic module, a water balance mod-

ule taking into account the refreezing of meltwater, a turbu-

lent module, a snow metamorphism module, a snow/ice dis-

cretization module, and an integrated surface albedo mod-

ule. CROCUS derives the turbulent sensible and latent heat

fluxes using a bulk method (Brun et al., 1989), which ap-

plies Monin–Obukhov similarity theory to estimate turbulent

fluxes using the near-surface wind speed and the temperature

and humidity differences between the surface and the tem-

perature at ∼ 3 m, prescribed by MAR. CROCUS uses the

bulk Richardson number to adapt the fluxes for stable and un-

stable atmospheric conditions. Note that a similar approach

has been used by Van den Broeke et al., (2009a, b). CRO-

CUS computes albedo and absorbed energy in each layer for

three spectral bands (i.e., one visible and two near-infrared

bands). The capability of the model to partition the incident

solar radiation between the layers allows melt occurs on mul-

tiple depths. In CROCUS each snow layer in the snow col-

umn is treated as a reservoir with a maximum water holding

capacity of 5 % of the pore volume. When the liquid water

content (LWC) exceeds the threshold, excess water moves

toward the layer below and the process continues until the

water reaches the bottom layer and generates runoff. In ad-

dition, CROCUS takes into account changes in LWC due to

snow melt, refreezing, and evaporation during a model time

step. The physics of CROCUS and its validation are detailed

in Brun et al. (1989, 1992).

Assimilation of data into an RCM is another option for at-

tempting to improve RCM fields (such as precipitation), but

that is beyond the scope of this work. The focus of this work

is to improve surface mass fluxes using RCM outputs and

assimilation of a surface remote sensing data stream. Fur-
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thermore, the use of a fully coupled MAR–CROCUS system

to generate an a priori ensemble estimate would be compu-

tationally prohibitive. To reduce the computational burden,

an offline version of CROCUS was implemented (i.e., MAR

was run over the whole modeling period, and then MAR out-

puts were used to force CROCUS over the same period). One

can think of the DA framework outlined below as providing

an update to an initial (prior) estimate of the surface mass

fluxes from MAR (or any other regional climate model) us-

ing IST data as an additional constraint.

Of particular relevance to this study is the connection be-

tween CROCUS states and the measured variables used in

the DA (i.e., IST). Surface temperature (synthetic IST) is an

output of the forward model (CROCUS); therefore, it can

directly be used as a prediction of the measurement in the

DA system. One key aspect is that the raw measurements

are available at higher spatial resolution than the model state

(i.e., 1.5 km vs. 25 km). This was handled via an assumed

change in the measurement error due to aggregation as de-

scribed in more detail below.

3.5 Model adaptation

The CROCUS snow/ice model was originally developed for

operational avalanche forecasting. Therefore, the model must

be modified for SMB ice sheet applications. Following Fet-

tweis (2006), the bottom boundary condition was modified

for simulating approximately the top 10 m of the ice sheets.

In this context, this represents the “surface” mass and energy

balance via the vertically integrated states and fluxes within

these top layers of the ice sheet. This method consists of the

following rules. First, if during the model integration the sum

of the snow and ice layer heights becomes less than 8 m, the

bottom layer is extended for 2 m. Second, in the case that the

sum of the snow and ice layer heights becomes larger than

15 m, the bottom layer is divided by 2. This is consistent with

the methodology used in nominal MAR simulations.

3.6 Ensemble batch smoother (EnBS) framework

The EnBS is a technique that conditions a prior estimate

of model states on measurements taken over an assimi-

lation window to generate a posterior reanalysis estimate

rather than a real-time (or sequential) estimate (Girotto et al.,

2014a; Bateni et al., 2013, 2015). In the context of this paper,

the assimilation window is a full annual cycle and measure-

ments consist of IST data over this period. Using the gen-

erated forcing fields from MAR, the CROCUS model was

run forward in time to provide an ensemble of a priori esti-

mates of snow/ice state variables (e.g., surface temperature,

snow/ice layer temperature, density, grain size) and different

surface mass fluxes (e.g., evaporation, sublimation, runoff).

The propagation of the CROCUS model forward in time can

be shown in state–space form as

yj (t)= f
(
yj (τ ),uj (t),βj

)
, (4)

where yj (t) is the vector of states for the j th realization at

time t , f (.) represents the CROCUS model operator, yj (τ ) is

the vector of states at previous times (τ ), uj (t) is the forcing

fields for realization j , and βj is the model parameter vec-

tor for replicate j . Conventionally, the generated snow/ice

states and surface mass fluxes by the forward propagation

of CROCUS are called the open-loop (prior) estimates. Note

that yj (τ = 0) represents the initial snow profile (IC is the

initial condition).

The main source of uncertainty in a priori snow/ice states

and surface mass fluxes is hypothesized to be most likely due

to errors in the meteorological forcings (uj (t), see Eq. 4)

generated by a parent model (in this case MAR): incom-

ing shortwave and longwave radiation, air temperature (Ta,

which is implicit in the latent and sensible heat fluxes), pre-

cipitation, wind speed, relative humidity, and cloudiness.

Herein, our focus is on the subset of key forcings that are

the postulated main drivers of SMB (i.e., P , Rl, Rs, and Ta).

It is hypothesized that the a priori uncertainty in forcings can

be modeled via

Pj (x, t)= γP,j (x)PMAR(x, t), (5a)

R
↓

s,j (x, t)= γS,j (x)R
↓

s,MAR(x, t), (5b)

R
↓

l,j (x, t)= γl,j (x)R
↓

l,MAR(x, t), (5c)

Ta,j (x, t)= γT ,j (x)Ta,MAR(x, t), (5d)

where PMAR(x, t), R
↓

s,MAR(x, t), R
↓

l,MAR(x, t), and

Ta,MAR(x, t) are the nominal near-surface meteorological

outputs from MAR; and γP,j (x), γs,j (x), γl,j (x), and γT ,j (x)

are log-normally distributed multiplicative coefficients de-

signed to capture uncertainty in the forcing inputs. The sub-

script j represents an individual ensemble member sampled

from the postulated uncertainty distribution (j = 1, . . . , Ne,

where Ne represents the ensemble size) and x shows the spa-

tial index (i.e., implicitly represents an individual computa-

tional pixel in the domain). It should be noted that a multi-

plicative log-normal perturbation model (e.g., Margulis et al.,

2002; Andreadis and Lettenmaier, 2006; Forman and Mar-

gulis, 2010) was used since all forcing variables (i.e., P , Rl,

Rs, and Ta (◦K)) are positive quantities and it provides a sim-

ple mechanism for capturing the expected uncertainty in the

inputs. This type of perturbation model characterizes the en-

semble using the first two moments (i.e., mean and coeffi-

cient of variation – CV) (Forman and Margulis, 2010). In

this study, the mean, CV, and cross correlation between the

forcing variables were obtained using the reported values in

De Lannoy et al. (2010, 2012). All of the parameters for each

forcing are shown in Table 1.

Traditional DA applications are posed as state estimation

problems where the vector of state variables (i.e., snow tem-

perature, density, grain size, depth) is estimated via condi-

tioning on measurements. In the current application, this can

www.the-cryosphere.net/10/103/2016/ The Cryosphere, 10, 103–120, 2016
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Table 1. Postulated parameters (coefficient of variation (CV) and

cross-correlation) for multiplicative perturbations to hourly meteo-

rological forcing inputs (the units for each forcing are P in mm h−1,

Rs and Rl in W m−2, and Ta in K).

Perturbation CV Cross correlation

P Rs Rl Ta

Precipitation (P ) 0.5 1.0 −0.1 0.5 −0.1

Shortwave (Rs) 0.2 −0.1 1.0 −0.3 0.3

Longwave (Rl) 0.1 0.5 −0.3 1.0 0.6

Air temperature (Ta) 0.005 −0.1 0.3 0.6 1.0

become prohibitive since the state vector dimension is ex-

tremely large (i.e., each snow state profile involves 50 lay-

ers with several states per pixel and several thousand pixels

over the domain). More importantly, updated states do not

provide quantitative information about surface mass fluxes.

Hence, here we took a different approach. Rather than esti-

mating the states directly, we treated the multiplicative co-

efficients γi,j in Eq. (5) as the “states” to be estimated. In

other words, the multiplicative coefficients have been used

to transfer the nominal MAR forcing into probabilistic space

(i.e., prior and posterior forcings). The DA algorithm uses

IST measurements to condition the probability density func-

tion (pdf) of the prior multiplicative coefficients to compute

the posterior pdf of the multiplicative coefficients. This strat-

egy, which was also used specifically for precipitation in Du-

rand et al. (2008) and Girotto et al. (2014a), is in direct recog-

nition of the fact that the primary source of uncertainty in

surface mass fluxes is due to error in the near-surface meteo-

rological forcing inputs. The added benefit of this approach is

that the size of the state vector is significantly reduced even in

the case of time variant multiplicative states. Such a strategy

derives a posterior estimate of the forcing variables directly

(via the updated γi,j ) and consequently allows for improved

estimates of the surface mass fluxes via a posterior integra-

tion of CROCUS (with the posterior forcing inputs). The

DA system theoretically allows the multiplicative states to

vary on any arbitrary timescale. However, for simplicity, we

implemented time-invariant perturbations (i.e., assumed γi,j
were unchanged over the annual modeling period) herein. In

this way the update to the states was designed to allow for

biases and/or low-frequency errors in individual realizations

in the prior multiplicative states.

It would be ideal to characterize the uncertainties for all

inputs from the information content in the assimilated data

stream(s). However, in many cases available measurements

are not relevant to some sources of uncertainty in the mod-

els. For instance, in this study, IST is less likely to have in-

formation about precipitation because there is no expected

meaningful correlation between precipitation and IST. With

regard to the fact that precipitation cannot be updated using

the IST data the focus of this work has involved constrain-

ing the GrIS surface mass loss (SML) components (i.e., sub-

limation/evaporation, condensation, and runoff), while still

including the expected uncertainty in the accumulation term

(precipitation). In other words, all forcing inputs were per-

turbed to take into account their respective postulated uncer-

tainties, but only longwave, shortwave, and surface air tem-

perature coefficients were updated as part of the assimilation

system.

In the update step, the EnBS merges IST measurements

with prior multiplicative states in order to generate a poste-

rior estimate of those multiplicative states. In this study, we

used an EnBS, which was implemented in a batch mode over

a pre-defined window (i.e., applied over 1 year) with a single

update. This feature of the EnBS (i.e., the batch mode up-

date) allows running MAR and CROCUS in an offline mode

that could be applied to the historical record. The open-loop

(prior) estimate of the variables of interest (i.e., γS, γl, and

γT ) were collected into the state matrix 0−. Similarly, the

vector of synthetically generated IST measurements was as-

sembled into a vector:

Tmeasurement = Ttrue+ v, (6)

where v is the assumed additive white Gaussian error and

Ttrue is the synthetic truth (see Sect. 4.1). Finally, each en-

semble member was updated individually via a Kalman-type

update equation (Durand and Margulis, 2008; Bateni et al.,

2013, 2015):

0+j = 0
−

j +K
[
Tmeasurement+Vj −Tpredicted,j

]
, (7)

where 0−j and 0+j represent the j th ensemble member before

and after the update, respectively, and Tpredicted is the ma-

trix of predicted measurements consisting of predicted IST.

V is the measurement error that was synthetically produced

and added to the measurements in order to avoid correla-

tion among the replicates (Burgers et al., 1998), and K is the

Kalman gain matrix which is given by

K= C0T [CT T +CV ]−1, (8)

where CV is the error covariance of the measurements,

C0T is the cross-covariance between the prior states and pre-

dicted measurements, and CT T is the covariance of the pre-

dicted measurements. In this framework, the state variables

are related to the measurements in the batch through the co-

variance matrices that are obtained from the ensemble.

The update in Eq. (10) can be seen as a projection of

measurement–prediction misfits onto the states. The updated

(posterior) multiplicative states were used in Eq. (5) to re-

trieve updated (posterior) forcing. The posterior forcings and

initial snow profile (IC) were used as inputs in CROCUS

to estimate the posterior surface mass fluxes. The proposed

methodology can simply be extended to multiple years by

applying the DA sequentially and independently for each

year (e.g., Girotto et al., 2014b) or via applying the DA
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to a moving window (e.g., Dunne and Entekhabi, 2005). A

schematic illustration of the methodology is presented in

Fig. 2. The proposed methodology can be thought of as a

post-processing (reanalysis) of MAR estimates by constrain-

ing the model using independent IST observations.

4 Experimental design

An OSSE or synthetic twin experiment offers a controlled

setting in which the true forcing variables (i.e., γS, γl, and γT )

are available. The goal of an OSSE is to evaluate the feasibil-

ity of the new methodology prior to assimilating real space-

borne measurements. In an OSSE, a synthetic true state and

corresponding noisy measurements of the system are gener-

ated and used to evaluate the feasibility of the DA framework

(e.g., Durand and Margulis, 2006; Crow and Ryu, 2009; De

Lannoy et al., 2010).

4.1 True selection

The synthetic truth uses realistic input and measurement er-

ror characteristics in conjunction with the forward models

to generate a realistic realization of the true system. In this

study, the synthetic truth was selected as an outlier (defined

below) from the generated ensemble due to the fact that

errors in forcings can yield differences between a forward

model (open-loop) estimate and the true surface mass fluxes.

In the OSSE system, traditionally the synthetic true en-

semble is chosen from state space trajectory of the forward

model (e.g., Crow and Van Loon, 2006; Durand and Mar-

gulis, 2006; Bateni et al., 2013). While an alternative ap-

proach could involve choosing the synthetic truth from the

trajectory space of another well-developed RCM model, run-

ning multiple RCM models to generate a synthetic truth is

prohibitive.

The ensemble of forcing data was generated via Eq. (5)

for the year 2010 and then the offline CROCUS implementa-

tion was run using the ensemble of forcing data to generate

estimates of the GrIS surface mass fluxes in 2010. The year

2010 was chosen, at least in part, since it was characterized

by an extreme melt rate (Tedesco et al., 2011). Considering

the fact that runoff is the main component of the GrIS surface

mass loss, the true ensemble (synthetic truth) was selected in

a way that the integrated true runoff over the GrIS was an

outlier relative to the median of the ensemble simulations.

The forcing variables, states, and fluxes corresponding to the

synthetic truth were also considered as the true forcings, the

true states, and the true fluxes, respectively. It should be high-

lighted that in a synthetic DA experiment, any generated re-

alization from the forward model (CROCUS) can be used as

the synthetic truth, but one that is significantly different from

the prior mean/median allows for a more robust assessment

of the value of the assimilated measurements. In other words,

in an OSSE the goal is to assess whether a DA framework can

Figure 2. Schematic illustration of the proposed methodology. The

posterior SMB/SML is effectively a post-processing (reanalysis) of

regional climate model (in this case MAR) estimates conditioned on

IST measurements. The term IC represents the initial snow profile.

replicate the randomly selected true by merging the measure-

ments with the prior (open-loop) estimates.

4.2 Assimilated measurement characteristics

Surface temperature from the forward model can be con-

sidered as a close approximation of the remotely sensed

IST. Here, the synthetic DA experiments were designed to

mimic reality as much as possible. Hence, the DA system

was run with a realistic representation of the temporal fre-

quency of real space-borne IST measurements; e.g, the GrIS

IST measurements from MODIS have a daily temporal res-

olution. However, in many instances daily observations are

not available due to cloud contamination, instrument outage,

and quality-related considerations. To take this issue into ac-

count, the number of available daily IST measurements (i.e.,

synthetic measurements) for assimilation in each month was

derived from the spatial average seen in the actual Greenland

IST product (e.g., Hall et al., 2012). The days with measure-

ments were selected randomly so that the total number per

month was consistent with the real number of available mea-

surements.

Since the raw MODIS IST measurements are available

at a much finer spatial resolution (i.e., ∼ 1.5 km) than the

model scale (25 km), the measurements themselves and their

error characteristics would require a pre-processing spatial

aggregation to match the resolution of computational pixels

(∼ 25 km). In the context of the OSSE in this study, the syn-
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thetic measurements and forward model both have the same

spatial resolution therefore there is no need for spatial aggre-

gation of the predicted measurement. However, specification

of realistic measurement errors need to take into account the

difference in spatial resolution between MODIS IST mea-

surements and the model pixel scale. Measurement errors for

MODIS IST at its raw resolution (i.e., 1.5 km) are expected

to be∼ 1–1.5 ◦K (e.g., Hall et al., 2012). Hence the measure-

ment errors at the model scale (25 km) are expected to be

less than or equal to this value depending on the level of cor-

relation of the measurement errors at the sub-pixel scale. In

the case of perfectly uncorrelated sub-pixel measurement er-

rors, the aggregated measurement would be expected to have

a measurement error equal to the fine-scale value divided by

the number of sub-grid MODIS pixels. Assuming uncorre-

lated sub-grid errors are likely overly optimistic, we postu-

lated that the measurement error standard deviation of IST at

the 25 km scale is 1 K.

4.3 Implementation

The feasibility of the new DA system was evaluated via as-

similation of IST as follows: a synthetically generated data

stream was assimilated within an EnBS framework to assess

the information content of the IST and explore whether it

can overcome errors in forcing inputs. This was examined by

comparing the open-loop and EnBS estimates of multiplica-

tive states with the synthetic truth. Thereafter, the posterior

meteorological forcings were fed into CROCUS to estimate

the surface mass fluxes. The performance of the EnBS algo-

rithm was further evaluated through the comparison of the

posterior estimates with the prior estimates and the true esti-

mate for all surface mass fluxes. It is worth noting that in the

OSSE in this study the ensemble size was set to 100 repli-

cates which has been shown to be adequate in previous rele-

vant studies (e.g., Margulis et al., 2002; Huang et al., 2008;

Evensen, 2009).

5 Results

5.1 Performance of the EnBS via assimilation of IST

To provide an illustrative example of the methodology,

Fig. 3a–c show the distribution of prior (open-loop) and pos-

terior (obtained by assimilating IST) multiplicative state vari-

ables corresponding to the different forcings for a sample

pixel (the red square in Fig. 1) in the ablation zone (latitude

67◦ N, longitude 49.8◦W), which is the critical zone in terms

of the GrIS surface mass loss. The prior distribution of mul-

tiplicative coefficients for each forcing variable is wide, rep-

resenting the postulated uncertainty in the prior forcings. In

contrast, Fig. 3a shows that the histogram of the posterior es-

timates of γT is tightly distributed around the true estimate.

A narrow distribution around the true estimate means that

the DA system uses the information contained in the IST se-

quence and moves the ensemble members toward the true

estimate while reducing the uncertainty of γT . The reduc-

tion in uncertainty is evident by comparing the base of the

posterior histogram with that from the prior estimates. The

positive update by the DA system can be explained based on

the fact that IST and air temperature are coupled and each

one affects the other (Hall et al., 2008). Figure 3b illustrates

that the median of the posterior estimate of γl agrees well

with the corresponding synthetic truth. Incoming longwave

radiation is correlated with the effective (near-surface) air

temperature and, as stated above, IST and surface air tem-

perature are closely tied to each other. Prior to melt, solar

radiation goes into heating the snow/ice surface; during the

melt period, energy input drives sublimation or evaporation

and melt (Box and Steffen, 2001). Therefore, it can be stated

that IST is positively correlated with the incoming shortwave

radiation. The EnBS system takes advantage of this corre-

lation and provides improved estimates of the multiplicative

state related to shortwave radiation (Fig. 3c).

Figure 3d presents the time series of the IST for the prior,

posterior, synthetic true, and assimilated measurements dur-

ing a portion of the assimilation window. For the purpose of

illustration, IST data for 10 days during the dry period (Jan-

uary) and beginning of the melt period (April) were selected

to show the ability of the algorithm to estimate the true IST

(Fig. 3d and e). It is evident in Fig. 3d–e that the EnBS cap-

tures the diurnal variability of IST and closely estimates the

true IST both during the days and nights during the dry and

melt periods. Moreover, Fig. 3d shows that the EnBS suc-

cessfully estimates the true IST even when the temporal reso-

lution of the IST measurements significantly decreases. This

is important since the IST record shows that there are fewer

measurements available during the months of December and

January (Hall et al., 2012) where in some years the avail-

able measurements during these 2 months drop to fewer than

10 measurements per month. Comparing Fig. 3d with Fig. 3e

also shows that during the month of January when there are

fewer IST measurements the posterior estimates are in good

agreement with the true IST, however, the uncertainty of the

estimates is slightly larger. These results illustrate that in-

formation from IST measurements can be exploited to esti-

mate the multiplicative states (i.e., γs, γl, and γT ) and conse-

quently the IST.

Results for the whole domain are presented in terms

of relevant bulk metrics that capture the integrated im-

pact of the forcings. Specifically, the pixel-wise cumulative

incoming shortwave and incoming longwave radiation (in

MJ m−2 yr−1) were used to represent the total energy input

into the ice sheet and provide insight into the surface energy

balance of the GrIS. For the air temperature, negative degree-

day temperature (NDD) (i.e., cumulative mean daily air tem-

perature for days in which the mean daily air temperature is

below 0 ◦C) and the positive degree-day temperature (PDD)

(i.e., cumulative mean daily air temperature for days in which

the mean daily air temperature is above 0 ◦C) are two other
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Table 2. The spatial mean bias, the spatial RMSE, and improvement metric κ for the prior and posterior estimates of the forcing variables

via assimilation of IST over the entire GrIS.

Rs Rl PDD NDD

(MJ m−2 yr−1) (MJ m−2 yr−1) (◦C day) (◦C day)

Prior bias −82.0 −25.6 −16.7 −8.0

Posterior bias −12.8 +4.6 −1.0 −2.8

Prior RMSE 791.6 549.1 33.3 394.6

Posterior RMSE 241.3 97.9 9.7 55.4

κ 452.2 375.0 13.8 257.0

Figure 3. Ensemble histogram of the prior (red bars) and the posterior (after assimilation of IST) multiplicative states (blue bars) for

(a) surface air temperature, (b) longwave radiation, and (c) shortwave radiation for a sample pixel in the ablation zone. The prior (red line)

and posterior (blue line) median values and truth (black line) are also shown for reference. Also shown are the time series of (d) the IST

for the 10-day period during the dry season and (e) the IST for the 10-day period during the melt season. The red and blue shaded areas

represent the prior and posterior uncertainty band (interquartile range) and the red, blue, and black lines represent the median of the prior,

the median of the posterior, and the truth, respectively. The green circles represent the synthetically generated (noisy) IST measurements that

are assimilated to generate the posterior estimates.

metrics which are indicative of snow accumulation and melt

periods, respectively. These bulk metrics were used to evalu-

ate the performance of the DA algorithm over the entire ice

sheet using root-mean-square error (RMSE) and an improve-

ment metric.

The spatial mean bias and the spatial RMSE of the prior

and posterior estimates of the integrated forcing variables

over the GrIS were computed using the prior, posterior,

and true cumulative longwave, shortwave, and air temper-

ature (i.e., PDD and NDD). Table 2 summarizes the spa-

tial mean bias and the spatial RMSE of the different forc-

ing variables. As can be seen for the entire simulation pe-

riod, the mean bias (RMSE) of cumulative shortwave, long-

wave, PDD, and NDD are, respectively, 84 % (70 %), 82 %

(85 %), 94 % (71 %), and 65 % (86 %) less than the mean

bias (RMSE) of the prior estimates.

An alternative method to evaluate the DA system is to de-

termine the contribution of remote sensing (RS) data to the

estimate explicitly. Following Durand and Margulis (2006)

and Bateni et al. (2013) an improvement metric based on the

prior and posterior error relative to the true was defined as

follows:

κi = |Y i(−)−Y
True
i | − |Y i(+)−Y

True
i |, (9)
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Figure 4. The histogram of the prior errors (red) and posterior (af-

ter assimilation of IST) errors (blue) for cumulative (a) shortwave

radiation, (b) longwave radiation, (c) PDD, and (d) NDD over the

full GrIS.

where the Y i(−) and Y i(+) represent the cumulative ensem-

ble median of the prior and posterior estimates of the forc-

ing i, respectively, and Y True
i is the cumulative synthetic true

for the forcing i. The improvement metric κi can be used

to interpret the contribution of the IST measurements to the

posterior estimates of the forcing. This formulation suggests

a value greater than 0 when the posterior error is less than

the prior error (i.e., measurement improves the posterior es-

timates), a value equal to 0 when the prior and posterior er-

rors are equal, and a value less than 0 when the error in the

posterior estimates is greater than that in the prior estimates

(the measurement degrades the posterior estimates). Table 2

shows that IST measurements make a large contribution to

correct the forcing variables. IST contributed an integrated

sum of 452, 375 (MJ m−2 yr−1), 14 and 257 (◦C day) to cor-

rect the shortwave, longwave, PDD, and NDD. The improve-

ment metric of the PDD is much smaller than that of the NDD

due the fact that there are many fewer days in which the mean

daily near-surface air temperature is above the freezing point.

In order to further investigate the performance of the

EnBS, the prior errors (i.e., prior− true) and the posterior

errors (i.e., posterior− true) were computed for each forc-

ing variable. Figure 4a–d show the histograms of the prior

and posterior errors for cumulative Rs, Rl, PDD, and NDD

over the spatial domain. The EnBS reduces the uncertainty

of the posterior estimates for all forcing variables and effec-

tively removes any of the prior biases. Therefore, using the

improved surface energy terms to force CROCUS improves

vertically integrated melt energy and enhances the estimates

of the states and fluxes over the vertical snow/ice column.

5.2 Updating the SML terms

While updating the forcing variables is the mechanism by

which the EnBS transfers information from IST into the pos-

terior estimates, the main objective of the DA framework in

this study is to assess the feasibility of providing better es-

timates of the GrIS SML and related fluxes using the im-

proved forcings. To generate a benchmark for our analysis,

CROCUS was run in open-loop mode using the prior forc-

ings (explained above). The SML terms obtained from the

prior (open-loop) simulation constitute a basis for evalua-

tion of the methodology implemented in this study. Using

the posterior forcing, CROCUS was executed for each grid

cell to obtain posterior estimates of surface mass fluxes (i.e.,

runoff, sublimation/evaporation, and condensation) and con-

sequently SML.

Runoff plays an important role in the GrIS net mass loss

and is the main component of the GrIS SML. The GrIS melt-

water runoff is heavily concentrated in the ablation zone

along the ice sheet margin where the width of the ablation

zone in the GrIS in some regions is very narrow and does not

exceed tens of kilometers. The map of synthetic true runoff

(Fig. 5a) shows that the west and southwest margins expe-

rience the highest rates of runoff that exceeds 6 m water

equivalent per year. It is worth remembering that the true

runoff is an outlier in the context of ensemble modeling as

explained previously. Figure 5b–c show the runoff anomaly

for the prior (i.e., prior− true) and the runoff anomaly for the

posterior (i.e., posterior− true), respectively. The gray areas

represent the percolation and dry snow zones, which do not

generally contribute to surface runoff during the simulation

period. It should be noted that in this area the snowmelt is

not necessarily zero but refreezing can inhibit runoff. The

prior anomaly map (Fig. 5b) shows that the open-loop simu-

lation consistently underestimates the true runoff across the

domain with a strong negative anomaly in the southwest mar-

gin (more than 1600 mm water equivalent below the true).

Comparing the GrIS margin pixels in the prior and poste-

rior maps (Fig. 5b–c) shows that the anomaly of the pos-

terior estimates is significantly lower than that of the prior

estimates. Reduced anomalies indicate that the EnBS suc-

cessfully recovers the true estimates of the runoff in most

pixels. However, the posterior results are not perfect and the

algorithm slightly underestimates and overestimates runoff

in some pixels.

Scatter plots of the runoff for the prior and posterior esti-

mates versus the true estimates are illustrated in Fig. 5d–e.

Each data point in Fig. 5d–e represents the ensemble me-

dian of the estimate (i.e., prior, posterior) versus the true es-

timate in a single pixel; the error bar illustrates the corre-

sponding ensemble interquartile range of the estimates in the

same pixel. The scatter plot of the prior runoff shows that

almost all data points lie below the 1 : 1 line, indicating that

the prior estimates were significantly biased (by construct in

this OSSE). The posterior scatter plot (Fig. 5e) displays that
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Figure 5. The (a) synthetic true runoff (mmWE yr−1) for the year 2010, (b) runoff anomaly (mmWE yr−1) for the prior (i.e., difference

between the prior and true runoff), (c) runoff anomaly (mmWE yr−1) for the posterior, (d) scatter plot of the prior runoff estimates, (e) scatter

plot of the posterior runoff estimates. Black dots are the ensemble median of the estimates and the error bars represent the corresponding

ensemble interquartile range of the estimates.

the data points are narrowly distributed around the 1 : 1 line

and the error bars are much smaller than that in the prior es-

timates, implying that the proposed algorithm significantly

removes the bias and decreases the uncertainty of the esti-

mates.

Sublimation and evaporation play an important role in

the GrIS surface mass loss. However, it should be noted

that MAR and CROCUS estimate surface sublimation which

is considerably smaller than drifting snow sublimation.

Lenaerts et al. (2012) reported for the period 1960–2011 on

average surface sublimation is responsible for 40 % of to-

tal sublimation and drifting snow sublimation is responsi-

ble for another 60 %. Here, the discussion focuses on sub-

limation rather than evaporation due to the fact that subli-

mation is 1 order of magnitude larger than evaporation. The

map of synthetic true sublimation (Fig. 6a) shows that the

west and southwest of the GrIS in the ablation zone experi-

ence the largest sublimation rates. Box and Steffen (2001) ex-

plained that at the edge of the ice sheet, where slopes become

steeper, the katabatic wind accelerates and tends to increase

sublimation. Furthermore, the net radiation increases during

the summertime, especially at lower latitudes, which in turn

generates a vertical temperature gradient and increases the

sublimation. Higher energy input also contributes to a pos-

itive albedo feedback (e.g., Tedesco et al., 2011) and fur-

ther increases the sublimation rates. The prior anomaly map

(Fig. 6b) illustrates that the open-loop model underestimates

the sublimation at the ice sheet margin and slightly overes-

timates it in the ice sheet interior. The results demonstrate

that posterior sublimation estimates from the assimilation of

IST are much closer to the truth than are the prior estimates

(Fig. 6c). Comparing the scatter plots of the posterior versus

the true estimates with that of the prior versus the true esti-

mates reveals that the methodology successfully overcomes

the bias and significantly reduces the uncertainty of the sub-

limation estimates and increases the confidence of the results

(see Fig. 6d–e).

Surface solid condensation (deposition) also influences

surface mass fluxes of the GrIS by adding mass to the ice

sheet. Similar to sublimation, wind and the vertical specific

humidity gradient are two key factors that control the de-

position. To be more precise, colder temperatures and lower

winds enhance the deposition rates. In contrast with sublima-

tion, deposition occurs at night and during winter, mainly due

to radiative cooling (Box and Steffen, 2001). Figure 7a shows

that the surface solid condensation (SSC) is greater in the ice

sheet interior where winds are weak and there is sufficient

moisture in the air column. The high elevation central re-

gions, however, show less condensation due to distance from

moisture sources. High speed winds in the ice sheet mar-

gins prevent condensation despite the availability of mois-

ture. Figure 7b shows that the prior estimates for SSC is not

in good agreement with the truth and that the prior simulation

both underestimates and overestimates surface solid conden-
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Figure 6. The same as Fig. 5 but for sublimation and evaporation.

Figure 7. The same as Fig. 5 but for surface solid condensation (SSC).

sation across the domain. A comparison between the prior

and posterior anomaly maps (Fig. 7b–c) suggests that the

posterior estimates closely recover the true estimates. Fig-

ure 7e shows that the data points are clustered around the

1 : 1 line, indicating that the EnBS corrects the bias in the

prior estimates (Fig. 7d). In addition, posterior error bars are

significantly smaller than that of the prior error bars, indicat-

ing that the EnBS effectively uses the information content of

The Cryosphere, 10, 103–120, 2016 www.the-cryosphere.net/10/103/2016/



M. Navari et al.: Improving a priori regional climate model estimates of Greenland ice sheet surface mass loss 115

Figure 8. The same as Fig. 5 but for the GrIS surface mass loss (SML).

the IST measurements to eliminate the bias and reduce the

uncertainties of the posterior estimates.

Herein, the SML is defined as the sum of the mass loss

terms (i.e., runoff and sublimation/evaporation) and mass

gain term (i.e., surface solid condensation) discussed above.

Figure 8a shows that SML is greater in the west and south-

west of the ice sheet where runoff is the dominant mass loss

mechanism and is smaller in the ice sheet interior where mass

loss mainly occurs through sublimation. Similar to runoff,

the prior anomaly is largely concentrated in the ablation zone

and, since runoff is roughly 2 orders of magnitude larger

than sublimation and condensation, the anomaly due to these

two fluxes is almost undetectable in the anomaly map (see

Fig. 8b). Comparing the posterior anomaly map (Fig. 8c)

with that of the prior clearly shows that the posterior SML

is closely matched with the true estimates across the domain.

Scatter plots (Fig. 8d–e) also confirm that the EnBS effec-

tively removes the bias and increases the confidence level of

SML estimates.

To provide an integrated picture over the full domain,

Fig. 9a–d show the time series of the cumulative runoff, sub-

limation, surface solid condensation, and SML over the GrIS,

respectively, in 2010. As illustrated in Fig. 9a, the true runoff

starts in late April and increases rapidly during the melt sea-

son (to a cumulative value of 408 mm) until late August. The

central tendency of the prior simulation (as indicated by the

ensemble median) underestimates the runoff by about 35 %

owing to errors in the forcing inputs. The posterior estimates

show a cumulative runoff of 394 mm over the GrIS, which

is in good agreement with the truth. Table 3 shows that the

Table 3. The spatial mean bias and the spatial RMSE of runoff,

sublimation/evaporation, surface solid condensation, and net mass

loss estimates via assimilation of IST measurements. The spatial

mean bias and the spatial RMSE for runoff were computed over the

ablation zone and for the other surface mass fluxes were computed

over the entire ice sheet.

Runoff Sublimation SSC Surface

(mmWE) (mmWE) (mmWE) mass

loss

(mmWE)

Prior bias −551.6 −3.1 −0.5 −38.9

Posterior bias −54.0 −0.3 −0.1 −3.8

Prior RMSE 646.1 14.7 4.6 174.1

Posterior RMSE 249.8 5.3 1.1 66.9

EnBS reduces the spatial mean bias (RMSE) of the prior es-

timates of runoff by 90 % (61 %) from −552 mm (646 mm)

to −54 mm (250 mm). Note that runoff occurs in the abla-

tion zone therefore the spatial mean bias and spatial RMSE

for runoff were computed over the ablation zone. The spatial

mean bias and spatial RMSE for sublimation, condensation,

and SML were computed over the entire ice sheet. As evi-

dent in Fig. 9b, sublimation accelerates during the summer

season owing to increased energy input to the snow/ice sur-

face. The true estimate suggests that in total net sublimation

(i.e., sublimation and evaporation) accounts for about 66 mm

(∼ 15 %) mass loss over the GrIS. The median of the prior

simulation shows a total sublimation loss of ∼ 56 mm which

is 10 mm less than the truth. The EnBS significantly im-
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Figure 9. The time series of (a) cumulative runoff, (b) cumulative sublimation and evaporation, (c) cumulative surface solid condensation,

and (d) cumulative mass loss over the GrIS (in millimeter of water equivalent). The truth is the black dashed line, the prior ensemble median

is the red line, and the posterior ensemble median is the blue line. The red shaded area corresponds to the ensemble interquartile range (IQR)

for the prior simulation and the blue shaded area corresponds to the ensemble IQR for the posterior estimates.

proves the results where the posterior median estimate shows

a total sublimation of 65 mm. From Table 3 the spatial mean

bias (RMSE) of the posterior estimate shows a 90 % (64 %)

reduction relative to the prior. In general surface solid con-

densation accelerates during the winter and decelerates in

the summer season (Fig. 9c). The true simulation suggests

a cumulative SSC of 27 mm, and the median of the prior and

posterior estimates is 25 and 27 mm, respectively. The 76 %

reduction of the spatial RMSE of the posterior estimates and

80 % reduction of the spatial mean bias (Table 3) also sup-

ports the accuracy of the posterior estimates. Finally, the true

SML estimate is 450 mm, and the prior and posterior median

of SML are 295 and 435 mm, respectively. Clearly the poste-

rior SML estimate is in better agreement with the truth. The

IST measurements contribute an integrated sum of 140 mm

to correct the posterior estimates of the GrIS SML and also

reduce the spatial mean bias and the spatial RMSE of the

estimates by 90 and 62 %, respectively (Table 3).

A probabilistic approach also provides information about

the uncertainty of the estimates. Figure 9a–d show that the

prior estimates of all surface mass fluxes have a large en-

semble spread, reflecting the propagation of a priori forcing

uncertainties to SML terms. During the update process the

EnBS significantly reduces the uncertainties of the posterior

estimates of forcing variables and consequently the posterior

estimates of the surface mass fluxes. Comparing the narrow

blue shaded area with the wide red shaded area illustrates that

the EnBS increases the confidence of the model predictions

by decreasing the error and uncertainties of the posterior es-

timates relative to the prior estimates.

5.3 Sensitivity to the synthetic truth values

As in any OSSE, the synthetic measurements are, by con-

struct, a function of the chosen true and therefore the pos-

terior results could be impacted by the particular selection

of the true realization. To address this concern, and show

the robustness of the proposed algorithm, the simulation was

repeated for two different true values: one smaller than the

baseline simulation and the other larger. In the first case the

synthetic true runoff was set to 330 mm, which is the average

of the runoff estimates from the open-loop simulation (i.e.,

∼ 260 mm) and the true runoff from the baseline simulation

(i.e., ∼ 400 mm). In the second case the true runoff was set

to 470 mm, which is 70 mm larger than the baseline simula-

tion. Table 4 shows the RMSE of the surface mass fluxes for

all simulation cases. The posterior RMSE of each mass flux

for all simulation cases are very similar even when the prior

RMSE of the estimates are significantly different. For exam-

ple, the prior RMSE of the runoff (SML) for the second sim-

ulation case (true runoff equal to 470 mm) is 2.5 (2.6) times

larger than the prior RMSE of the first simulation case (true

runoff equal to 330 mm), but the posterior RMSE differs by
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Table 4. The spatial RMSE of runoff, sublimation/evaporation, sur-

face solid condensation, and net mass loss estimates via assimilation

of IST measurements for three different true values.

True runoff Runoff Sublimation SSC Surface

(mm) (mm) (mm) (mm) mass

loss

(mm)

330 Prior 348.9 13.4 4.7 92.8

Posterior 249.2 4.8 1.1 63.6

400 (baseline) Prior 646.1 14.7 4.6 174.1

Posterior 249.8 5.3 1.1 66.9

470 Prior 894.4 16.0 4.6 245.1

Posterior 259.4 5.2 1.1 70.7

only 4 % (10 %). Therefore, it can be stated that the DA algo-

rithm robustly retrieves the true estimates of the surface mass

fluxes and the performance of the algorithm is relatively in-

sensitive to the selected truth.

6 Discussion and conclusions

A new data assimilation methodology for improving esti-

mates of the GrIS surface mass loss fluxes has been tested

and presented using an observing system simulation experi-

ment framework. The prior estimates were derived from an

offline surface module (CROCUS) forced by an ensemble of

meteorological forcing fields that were based on a nominal

regional climate model simulation (in this case MAR). A

posterior estimate was generated by conditioning the forc-

ings on the synthetically generated IST measurements us-

ing an ensemble batch smoother (EnBS) approach. Specif-

ically, it was shown that using the EnBS with IST measure-

ments, we were able to improve nominal estimates derived

from MAR that result from erroneous forcing fields that drive

surface mass and energy balance processes. The results il-

lustrated that IST measurements have potential information

on shortwave, longwave, and surface air temperature that al-

lows for correction of errors in these terms. However, due to

the lack of meaningful correlation between precipitation and

IST measurements, the precipitation flux was not updated

in this context (i.e., the prior and posterior precipitation is

the same). Hence the assimilation of IST is primarily bene-

ficial for estimating the surface mass loss terms and not the

accumulation term. However, it should be noted that using

MAR–CROCUS to generate the synthetic truth might lead

to optimistic results since the truth is taken from the same

model. Mitigation of this was attempted by using an outlier

for the truth. An expensive alternative, but worth pursuing

in future work, would be to use other RCM models to gen-

erate the synthetic truth. That said, it can be argued that us-

ing another model such as RACMO2 (Ettema et al., 2009) to

generate the true realization will not significantly affect the

results because the synthetic truth from RACMO2 is likely

to fall within the ensemble spread of MAR–CROCUS tra-

jectory. The main reasons for that are (1) the SMB fluxes

from MAR and RACMO2 are highly correlated (Fettweis et

al., 2013) and (2) the trends of SMB fluxes from two models

are very similar (Vernon et al. 2013). Furthermore, sensitivity

analysis shows that the proposed algorithm is able to retrieve

the synthetic truth for the extreme cases where the real true

stats fall beyond the chosen values.

The new methodology has several advantages over the tra-

ditional state–space data assimilation approaches. First, in

this new application the multiplicative perturbation variables

are considered as states to be updated. Reduction of the size

of the state vector and consequently computational costs is

the direct outcome of this approach. Second, mass loss terms

cannot directly be sensed by the means of satellite sensors;

using this methodology, the mass loss fluxes were estimated

indirectly by reducing the error in forcing variables. Finally,

the modularity of the proposed methodology would allow

for incorporation of any regional climate model and addi-

tional remotely sensed observations in future applications.

All of these advantages should make such data assimilation

approaches attractive and complementary approaches to bet-

ter resolve and diagnose the ice sheet surface mass fluxes.

The improved mass loss estimates could also be used as input

to net mass balance estimates and ultimately a sea level rise

projection when applied to real data over the remote sensing

record.

As a final note, it should be emphasized that the appli-

cation presented in this study does not attempt to optimize

or include uncertainty in any model parameters. Rather, the

focus is on the uncertainty of time-varying model forcing in-

puts, which is expected to be the primary source of uncer-

tainty in estimates of surface melt. We acknowledge that the

model parameters are treated as certain and, therefore, any

uncertainty/error in model parameters (e.g., water holding

capacity that impacts the transformation of meltwater into

runoff) would increase the expected error in posterior SML

in an application with real data. A more general case where

estimation of parameters is included in the data assimilation

framework could be the basis of future work.

The next logical step is to apply the methodology with

real IST measurements to further validate the robustness of

the proposed approach. This future work will include the

use of the MODIS IST product for estimating GrIS SML.

The data assimilation framework is general and could also

include the potential application of assimilation of passive

microwave, albedo, and even Gravity Recovery and Climate

Experiment (GRACE) data to further constrain GrIS SMB

estimates.
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